NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

RE-ENGINEERING OF THE
COMPUTER-AIDED PROTOTYPING SYSTEM
FOR PORTABILITY

by
Dennis M. Irwin

September, 1996

Thesis Advisors: _ Lugi
Berzins

Approved for public release; distribution is unlimited.

DTIC QUALLEY §5:Eh

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED
September 1996. Master’s Thesis

4. TITLE AND SUBTITLE RE-ENGINERRING OF THE COMPUTER- 5. FUNDING NUMBERS
AIDED PROTOTYPING SYSTEM FOR PORTABILITY

6. AUTHOR(S) Dennis M. Irwin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The Computer-Aided Prototyping System (CAPS) Release 1 currently runs only on SPARC workstations
running SunOS version 4.1.3. This limits the usefulness of CAPS, particularly since Sun has announced it has no
plans to continue support for SunOS version 4.x. A solution to this problem is to increase the portability of CAPS
by first porting CAPS to the Solaris 2.5 operating system.

Towards this end, this thesis discusses and evaluates the underlying system software and software tools
necessary to build and run CAPS within the Solaris 2.5 operating environment for SPARC workstations.

As aresult of this effort, a version of CAPS has been created that runs on a SPARC workstations using the
Solaris 2.5 operating system. Furthermore, the research has identified the necessary software tools and potential
problem areas for determining the feasibility of porting CAPS to other platforms. Versions of X Windows, Motif,
Synthesizer Generator, Eli, TAE Plus, and the VADSself Ada compiler are required. Since TAE Plus only supports
the SunAda (VADS) compiler, use of a different Ada compiler will require either porting the TAE Ada bindings or
using an alternative to TAE Plus. Additionally, an explicit installation of Motif is required to provide all the
libraries needed to produce static builds of the CAPS components.

14. SUBJECT TERMS Software Engineering, Rapid Prototyping, CAPS, Solaris, 15. NUMBER OF
XWindows, Motif, TAE, Ada, User Interface. PAGES 116
16. PRICE CODE
17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- |20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited.

RE-ENGINEERING OF THE COMPUTER-AIDED PROTOTYPING
SYSTEM FOR PORTABILITY

by

Dennis M. Irwin
Lieutenant, United States Navy
B.S., Louisiana State University, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 1996

Author: ’DW m ‘ s«-r)“ oo

ZS\M;IIW_Z
Approved by:

Lugqi, Thesis Advisor

e D - -
Dl Bfon ans

Valdis Berzins, Thesis Mlvis/or

s

Ted Lewis, Chairman
Department of Computer Science

il

iv

ABSTRACT

The Computer-Aided Prototyping System (CAPS) Release 1 currently runs only
on SPARC workstations running SunOS version 4.1.3. This limits the usefulness of
CAPS, particularly since Sun has announced it has no plans to continue support for
SunOS version 4.x. A solution to this problem is to increase the portability of CAPS
by first porting CAPS to the Solaris 2.5 operating system.

Towards this end, this thesis discusses and evaluates the underlying system
software and software tools necessary to build and run CAPS within the Solaris 2.5
operating environment for SPARC workstations.

As a result of this effort, a version of CAPS has been created that runs on a
SPARC workstations using the Solaris 2.5 operating system. Furthermore, the
research has identified the necessary software tools and potential problem areas for
determining the feasibility of porting CAPS to other platforms. Versions of X
Windows, Motif, Synthesizer Generator, Eli, TAE Plus, and the VADSself Ada
compiler are required. Since TAE Plus only supports the SunAda (VADS) compiler,
use of a different Ada compiler will require either porting the TAE Ada bindings or
using an alternative to TAE Plus. Additionally, an explicit installation of Motif is
required to provide all the libraries needed to produce static builds of the CAPS

components.

L INTRODUCTION ... i e i e ettt et e e 1
A THE SOFTWARE ENGINEERING PROBLEM 1

B. RAPIDPROTOTYPING ittt 2

C. COMPUTER-AIDED PROTOTYPING SYSTEM (CAPS) 4

D. THESIS OBJECTIVE i, 4

E. OVERVIEW OF REMAINING CHAPTERS 5

I. COMPUTER-AIDED PROTOTYPING SYSTEM (CAPS)coovinn.. 7
A CAPS BENEFITS it 8

B. MAJOR CAPS COMPONENTSottt 9

1. GraphEditor i i 9

2. PSDLEditor ...ttt 9

3. Expander i 9

4. Translator i i i 10

5. Scheduler i, 10

6 Toollnterface i ..., 10

C. OPERATING ENVIRONMENT COMPONENTS 10

1. Solaris 2.5 and OpenWindows 3.5 11

2. XWindowsandMotif 13

3. TAEPlusv5.3l 14

TABLE OF CONTENTS

4. Synthesizer Generator4.2ttt 16

5. Elidd e 16

6. VADSsefTM 6.2 ... i e 17

7. Sun SPARCworks 4.0ot 17

8. GNAT 3.05 ..o i i e 17

OI. PORTING CAPSTO SOLARIS i i i en 19
A GENERAL STRATEGYttt i i eieiinenn 19

B. SYSTEM REQUIREMENTS i, 19

C. EVALUATION i i e e 20

1. Solaris Compatibility Issues 20

2. X-WindowsandMotif L. 22

3. TAEPlus o e 23

4. Synthesizer Generatorand Eli 23

5. Compiling, Linking, and Loading 23

6. Shell Scripts i e 24

IV. CONCLUSIONS AND FUTURERESEARCH, 27
A. SUMMARY .. i it e 27

B. SUGGESTIONS FORFUTUREWORK 29

L. Alternativesto TAEPlus 29

2. Ada 95 Compiler Integrationccouuan... 29

3. ToolsInterface 0 nnnnn. 30

4. Personal Computer Version 30

5. Shell Scripts 30

6. AlertDialogBoxescciiiiiiiininnnnnnan.. 31

7. NewEnvironmentst iiinnnn... 31

C. CONCLUSION ... i e et et e e 32
LISTOFREFERENCES ittt ittt et 33
BIBLIOGRAPHY . .. i i i i e et e e e 35
APPENDIX A. LOCAL SOLARIS SYSTEM INFORMATION 39
APPENDIX B. SHELL SCRIPTSttt in i, 61
APPENDIX C. WORLD WIDEWEB SITEScciiiiiiiiiinnnn.. 91
APPENDIX D. POINTSOFCONTACT ..ottt ittt i i 99
INITIAL DISTRIBUTION LIST ottt 103

ACKNOWLEDGEMENT

Thanks go out to everyone in the Computer Science Department who assisted me in
my thesis research. 1 would like to thank Sue Whalen for allowing me to camp out in her
office and assisting me with system administration problems. I would also like to thank Mike
Williams for attending to all my hardware needs. Finally, special thanks goes to my wife

Annie for her undying support for me during my research effort and the troublesome write-up.

I. INTRODUCTION

Today, computers are increasingly inexpensive and fast. They are becoming
universally prevalent and are taking on the appearance of a household appliance. With the
increased use of computers in everyday life, software designers face bigger problems.
Software must be inexpensive to develop, meet user requirements, and be reliable.
Consequently, there is a great need to improve software productivity and reliability [Ref. 1].
A. THE SOFTWARE ENGINEERING PROBLEM

The problem facing software engineers today is how to produce and manage large-
scale software projects involving millions of lines of code and teams of programmers. Such
large-scale projects are not uncommon in the Department of Defense.

One of the problems in the development of large-scale software systems is
requirements analysis and specification. As pointed out by Lugi [Ref. 1: p.111], “as systems
get larger and serve more diversified user communities, formulating requirements that
accurately represent the customer’s needs becomes the limiting factor in producing useful
software.”

Typically, the customer gives the software engineer a set of requirements of what they
believe the software should be. However, such a statement of requirement is often vague,
incomplete, and inconsistent. The software engineer must analyze what the customer desires

and build the software. It is at the end of a costly production and testing that the customer

receives the product. If the customer’s needs have changed during development or the
product is not what tﬂc customer had in mind, then the product has to be reworked at great
expense.

The majority of errors in large software projects are due to faults in the requirements
specification, which are not normally detected until after the product has been developed and
in the testing phase. [Ref. 2] However, the cost of fixing software errors rises dramatically
later in the life-cycle. Therefore, more effort needs to be placed earlier in the software
development life-cycle to reduce errors and the cost of maintenance.

The need for more effective software engineering is clearly evident in the Department
of Defense, where software technology lags far behind hardware development. In FY 1995,
DoD’s investment in software was $42 billion, yet most large software projects are
overbudget, overtime, or even failures. Specifically, 53%of the software projects had cost
or time overruns, 31% were canceled, and only 16% were delivered on-time and on-budget.
[Ref. 3]

B. RAPID PROTOTYPING

Changes to a software system, whether due to changes in requirements, the need for
improvements, or bug repairs, accounts for more than half of the total cost of the software.
One solution to reducing this cost is through the use of prototyping. [Ref. 4: p. 13]

“...a prototype is a concrete executable model of selected aspects of a proposed
system.” [Ref. 4: p. 13] Prototyping involves an iterative approach to design with many

opportunities for the customer to provide feedback before the design goes into production.

The software engineer uses the customers specifications to draw up the software’s
requirements, determines what the problem areas are, and produces a prototype to
demonstrate the area in question. The customer has an opportunity to interact with the
prototype and determine if it meets his or her needs. Inputs from the customer produces
changes in the requirements and corresponding changes in the prototype. Only after the
customer is satisfied with the prototype does the software goes into production. In a similar
manner, the existing prototype can be modified to test proposed changes to the production
software during the maintenance phase. Therefore, “rapid prototyping is the process of quicly

building and evaluating a series of prototypes.” [Ref. 4: p. 13] Figure 1, taken from [Ref. 4:

Initial Goals

Requirements

Performance

Validated
Requirements

Constn{ct Moduiarization and Objects
Production

System

System

New Goals Production
Use

Figure 1. The Prototyping Process.

p. 14], illustrates the iterative prototyping process. However, prototyping is not practical
unless it can be done rapidly, accurately, and cheaply [Ref. 1: p. 111].
C. COMPUTER-AIDED PROTOTYPING SYSTEM (CAPS)

To assist software engineers in constructing and evaluating prototypes rapidly and
systematically, software tools are introduced [Ref. 4: p. 14]. One of the tools available to
software designers is the Computer-Aided Prototyping System (CAPS), an ongoing research
project at the Naval Postgraduate School (NPS). CAPS provides the tools needed to perform
rapid prototyping of real-time systems. CAPS supports rapid prototyping by providing an
integrated set of automated programs generation and design decision support capabilities.
CAPS accomplishes this by utilizing a graphical editor with decomposition, software reuse,
and automatic code generation where possible. [Ref. 4]

D. THESIS OBJECTIVE

In order to keep in step with technological advances in computing, this thesis
examines the system requirements needed to upgrade CAPS. The next release of CAPS
should not only incorporate improvements to the individual tools, but should also have
increased portability and be adaptable to additional platforms. Towards this end, the thesis
research ascertained and implemented the necessary system and software tools required to
port CAPS to the Solaris 2.5 operating system for Sun SPARCstation. Furthermore, the new
version incorporates improved CAPS components from Release 2.

As a result of this thesis research, CAPS Release 2 will be avajléble for SPARC
workstations running either SunOS 4.1.3 or Solaris 2.5 operating systems. Additionally, this

porting effort identified the software requirements and potential problem areas that will be

4

useful in porting CAPS to additional operating environments. This effort is an enabling step
for a major technology transfer effort to be undertaken by the research group to make
computer-aided prototyping technology available through out the Department of Defense
(DoD).
E. OVERVIEW OF REMAINING CHAPTERS

This chapter discussed the software engineering problem, rapid prototyping as a
possible solution, and CAPS as a tool for rapid prototyping of real-time systems. The
remainder of the thesis consists of the following chapters. Chapter II describes CAPS in more
detail, including the system architecture. Chapter III describes the effort to port CAPS to
Solaris, including the software required to build and run CAPS on a Solaris system. Chapter
IV summarizes results and provides future work to continue the porting of CAPS to other
operating environments. Appendix A provides specific information on the local Solaris
installation and system maintenance. Appendix B contains the CAPS shell scripts. Appendix
C provides a list of World Wide Web Pages useful for additional subject information. Finally,

Appendix D provides a list of points of contacts for hardware and software products.

II. COMPUTER-AIDED PROTOTYPING SYSTEM (CAPS)

CAPS is an environment for rapidly developing prototypes for real-time systems based
on the Prototype System Description Language (PSDL) [Ref. 2]. CAPS is actually an
integrated set of development tools with a common user interface as illustrated in Figure 2,

taken from [Ref. 5: p. 204].

PSDL

Syntax
Interface \ Directed [Graphic
Editor Editor /' ggitor

(TAE)

Design Software
Database Tool Base

Ada Interface Ada Code
Compiler Editor

Static
Scheduler

Dynamic 4
Scheduler /

" Translator

User Interface

Figure 2. The CAPS Tool Interface.

A. CAPS BENEFITS
CAPS is public domain software capable of automatically producing fast and reliable

code, thus providing a low cost solution for software engineers. In general, CAPS [Ref. 3]:

® automates software development,

® improves software quality,

® reduces development time,

® decreases life-cycle costs,

e supports Mil-Std 498 for software acquisition and development,
® aids in the DoD Software Reuse Initiative (SRI), and

e provides better overall project management.
Some of the benefits CAPS provides the user are [Ref. 6]:

e graphic model representation of the software design,

® non-procedural annotations, requiring no specific programming Ilanguage
knowledge during the design and specification phase,

® automatic generation of code free of syntax errors and interface consistency errors,
® automatic generation of schedules to meet strict real-time deadlines,

® support for computer-aided generation of graphical user interfaces and simple
animations of prototype behavior,

e fast and early feedback to the user through an executable prototype,

® carly detection of errors in the requirements phase,

® the ability to firm up requirements before production through iterative assessment
and modification of graphical representations, as well as requirements changes
after delivery,

® casy modification of software designs to meet the customer’s changing needs,

® requirements tracing through facilities for recording dependencies, linking
requirements to specification, and preserving design information, and

® computer-aided assessment of hardware/software tradeoffs relative to different
types of hardware.

B. MAJOR CAPS COMPONENTS

The current release of CAPS is composed of six main compdnents which
communicate which each other directly or through the operating system via a collection of
shell scripts.

1. Graph Editor

The graph editor is used to create CAPS enhanced data flow diagrams, which will be
converted into PSDL descriptions by the PSDL Editor.

2. PSDL Editor

The PSDL editor incorporates the PSDL Syntax Directed Editor (SDE). The SDE
takes information from the data flow diagrams created with the graph editor and allows the
user to edit the PSDL descriptions. The SDE is created using the Synthesizer Generator.

3. Expander

Expands the PSDL source.

4. Translator

The translator converts the PSDL code representation of the prototype into Ada
packages. Primarily, it implements the data streams and control constraints described in the
PSDL source. The translator is built using EliL

S. Scheduler

The scheduler incorporates scheduling algorithms to automatically construct real-time
schedules, if feasible, for the prototypes. The scheduler performs both static and dynamic
scheduling. The static scheduler precomputes and allocates time slots for time- critical
operations based on a worst case execution time. The dynamic scheduler controls non-time-
critical operations during runtime by allowing them to run in time slots not being used by
time-critical operations. [Ref. 4]

6. Tool Interface

The tool interface provides a graphical user interface for accessing all of the CAPS
tools. The current release only supports the designer mode interface (caps_d.exe). The user
interface was created using TAE Plus.

C. OPERATING ENVIRONMENT COMPONENTS

The Solaris 2.5 version of CAPS is built upon a layered operating environment as

shown in Figure 3. With Solaris available for many different platforms, it is envisioned that

upper layers of this environment can be ported relatively easy to different platforms.

10

X Windows

Solaris Operating System

R R BB R R R RSB RR8

Computer Architecture

Figure 3. System Architecture Layers.

Solaris 2.5 and OpenWindows 3.5
Solaris 2.5 (sometimes referred to as SunOS 5.5) is the latest version of the Unix
operating system available at the time of this writing from Sun Microsystems and is being

shipped with their new workstations. Solaris is based on AT&T Unix System V Release 4

There is a risk of confusion with regard to the naming conventions of Sun’s operating
systems. Solaris 2.x is the same as SunOS 5.x. Sometimes the older SunOS 4.x is referred

to as Solaris 1.x. In this document, SunOS refers to SunOS 4.1.x and Solaris refers to SunOS

11

Solaris is a true 32-bit, multi-threaded, multi-processor operating system with
implementations available for multiple platforms including SPARC, x86/Pentium/Pentium Pro,
and Power PC. It also includes enhancements to take advantage of the higher performance
available from Sun’s new UltraSPARC processor (64-bit). [Ref. 7]

Solaris is used worldwide with an installed base of over two million users and supports
for over 10,000 applications for SPARC systems and over 1,000 applications for Solaris x86.
[Ref. 7]

Solaris provides many advantages including portability, scalability, interoperability,
and compatibility. Solaris also include added functionality not found in SVR4, such as
symmetric multi-processing with multi-threads, real-time functionality, increased security, and
improved system administration. [Ref. 8]

Real-time functionality is supported in Solaris 2.5 through the use of a real-time
scheduling policy in addition to a timesharing policy. Users can set real-time priorities for a
process so that it will get the CPU as soon as it is ready to run. [Ref. 9]

One of the key features of Solaris is its availability for several different architectures,
including personal computers based on Intel processors (Solaris x86).

Solaris 2.5 supports multiple processor architectures from a single

source tree, preserving close compatibility between binary applications. This

means developers do not have to rewrite application source code for each

hardware architecture. Instead of developing three or more versions of the

same applications, ISVs (Independent Software Vendors) can create one

source version, compile the binaries on various hardware systems, and deploy

the application across multiple architectures. Solaris 2.5 also provides access

to new computing technologies such as the Java programming language...
[Ref. 10]

12

Therefore, Solaris provides the potential of porting CAPS to a variety of platforms running
the Solaris operating system.

2. X Windows and Motif

The X Consortium’s X Windows System and the Open Software Foundation (OSF)
Motif provide the graphical user interface for many Unix-based applications. Currently, the
Solaris operating system ships with the X Windows (X11R5) and Motif 1.2.4 runtime
libraries. The latest stand alone releases are X11R6/R6.1 and Motif 2.0.

X Windows, which was originally developed at MIT, ... is a network-transparent
window system which runs on a wide range of computing and graphics machines.” [Ref. 11]
Additionally, the X Window standard has enabled applications with graphics to become
independent of the system hardware and software, thereby increasing portability.

The X Window System allows developers to write applications that

can display information (graphical or otherwise) and accept input on one

device while running on a different computer in the network. In X

terminology, the application logic, written by the developer, is called the

client. The client is linked with the MIT X windows libraries and the libraries

of a specific X-based toolkit (such as Motif) to create a complete application.

A client can reside on a remote computer anywhere in a network. The display

logic of X, called the server, resides on an individual user’s computer and is

provided by the machines vendor or a third-party software vendor. A client

and server can also reside on the same machine. To ensure software

portability and compatibility, all X servers must conform to the X Window

System X11 protocols. [Ref. 12]

OSF/Motif provides a standardized graphical user interface for applications running

on the X Window System. Motif provides a PC-style behavior and appearance that can be

run on many different platforms supporting the X Window System (specifically X11R5). One

13

of the main components provided by Motif is its User Interface Toolkit, which is based on the
X11 Intrinsics. The toolkit provides the developer with a set of graphical objects (widgets),
such as menus and scroll bars, which can be used to build graphical user interfaces with a
consistent style. [Ref. 13]

With the increased popularity of network computing environments, the X Window
System and Motif are being used on more platforms than just workstations and X terminals.

3. TAE Plus v5.31

“TAE (Transportable Applications Environment) Plus is a portable software
development environment that supports rapid building, tailoring, and management of graphic-
oriented user interfaces.” [Ref. 14: p. 1] TAE Plus version 5.3 is the first commercial release
of TAE Plus from Century Computing, Inc. [Ref. 15: p. 1] TAE Plus was originally

developed for NASA’s Goddard Space Flight Center.

TAE Plus provides a WorkBench for the design and layout of an application’s user
interface, Window Programming Tools (Wpt) Package which is a set of callable subroutines
used to control the user interface during runtime, and Code Generator which automatically
generates code for the user interface in C, C++, or Ada. [Ref. 14: p. 1] TAE Plus uses MIT’s
X Window System and Open Software Foundation’s Motif Toolkit. [Ref. 14: p. 4]

TAE Plus is based on the X Window System and the Motif Toolkit. [Ref. 14: p. 9]
However, TAE Plus hides the complexities of the underlying X Windows and Motif, making
it easy for even non-programmers to develop graphical user interfaces in a Unix environment.

TAE Plus accomplishes this through Wpt package calls. The Wpt package is layered on top

14

of the Motif Toolkit which provides high level interface objects called “widgets”. The Motif
Toolkit interfaces with the X Toolkit, which is based on Xlib that provides the graphic
primitives for X Windows. The X Windows server interfaces between the X Windows System
and the underlying operating system and hardware. [Ref. 14: p. 10] Figure 4, taken after
[Ref. 14], illustrates this relationship.

Additionally, TAE Plus creates a user interface definition that is separate from the
application code, thereby allowing changes to the interface without having to changing the

application code. [Ref. 14: p. 17]

TAE Plus Apphcauon

X Toolklt

Operating System lerarles

Figure 4. TAE Plus, Motif, and X11.

15

4. Synthesizer Generator 4.2

One of the tools used to build the CAPS PSDL Editor is the Synthesizer Generator
from GrammaTech, Inc.

The Synthesizer Generator is a tool for implementing language-based
editors. The editor designer prepares a specification that includes rules
defining a language’s context-free abstract syntax, context-sensitive
relationships, display format, and concrete input syntax. From this
specification, the Synthesizer Generator creates an editor for manipulating
objects according to these rules. [Ref. 16: p. 1]

“The Synthesizer Generator is especially well suited for creating editors that enforce
the syntax and semantics of a particular language.” [Ref. 16: p. 1] In this case, the language
is the CAPS Prototyping System Description Language (PSDL). The Synthesizer Generator
is used to generate the Syntax-Directed Editor (SDE) within the PSDL Editor.

5. Eli 4.4

Another tool used to build CAPS is Eli. Eliis being developed by the Compiler Tools
Group Department of Electrical and Computer Engineering at the University of Colorado and
is freely available. Eli is a set of tools that provide a sophisticated compiler construction
environment which can be used to automatically generate complete language implementations
from specifications. The compiler construction methods and techniques utilized by Eli can
applied to a variety of problems other than just the development of compilers for
programming languages. Eli produces code that is comparable to good code done by hand,

but at generally at one-third the time. In this case, Eli is used in the build of the CAPS

Translator module. [Ref. 17]

16

6. VADSself™ 6.2

VADSself™ is an Ada83 compiler available from Rational Software Corporation.
The original version of CAPS was created with and utilized the Sun Ada compiler version 1.1.
The Sun Ada compiler is actually the Verdix Ada compiler marketed by Sun. The Verdix
compiler was acquired by Rational; therefore, VADSself™ 6.2 is the latest version of the Sun
Ada/Verdix compiler family and is compatible with CAPS.

7. Sun SPARCworks 4.0

SPARCworks version 4.0 for Solaris was the primary C/C++ compiler used to build
the tools needed to build CAPS and to build CAPS itself.

8. GNAT 3.05

The GNAT is a Ada95 compiler that is part of the GCC compiler system. GNAT is
available for free from New York University and the Free Software Foundation
(ftp://cs.nyu.edu/pub/gnat/). GNAT itself was not used to build CAPS, but the GCC C/C++
compiler (version 2.7.2) which is part of it was used to build parts of the previously mention

tools when the SPARCworks compiler proved to be too strict for the older C source code.

17

18

1. PORTING CAPS TO SOLARIS

A. GENERAL STRATEGY

The research consisted of the following stages. The first was to determine the major
pieces of software that were required to setup the operating environment needed to build and
run CAPS. The second step was to obtain and install Solaris versions of the required
software, either from source code or pre-compiled binaries. Next, incompatibilities were
determined by attempting to run CAPS Release 1 on the new Solaris environment. Finally,
the new CAPS components (Release 2) were statically compiled for the Solaris 2.5
environment and the shell scripts were modified as necessary.

An extensive portion of the research involved acquiring, installing, and configuring
the Solaris 2.5 operating system on two older Sun workstations: perseus, a SPARCstation
2, and aldebaran, a SPARCstation 1+. Later, the operating system was installed on suns§,
a SPARCstation 10, and suns9, a SPARCstation 20, with suns8 configured to export
software to the other Solaris workstations. The systems were connected to the Computer
Science Department network, but were configured stand alone due to the fact that they were
research machines and access was restricted.

B. SYSTEM REQUIREMENTS

CAPS Release 1 runs on a Sun SPARCstation running SunOS 4.1.1 or later with X

Windows (X11R4 or X11RS5), OSF/Motif 1.1.2 or later, SunAda Compiler 1.1, and

optionally TAE Plus v5.3. [Ref. 18]

19

The new native Solaris version runs on Sun SPARCstations running Solaris 2.4/2.5
with OpenWindows 3.5, VADSself 6.2, and optionally TAE Plus 5.31.

Table 1 provides a listing of the approximate hard drive space required for the various
software tools evaluated or actually used to build and run CAPS on Solaris 2.5. The totals

were acquired using the UNIX disk usage command (dqu -ks).

Hard Drive Space Requirements
Solaris 2.5 (full install) 400.0 MB
CAPS Release 2 (no source code) 47.4 MB
CAPS Release 2 (with source code) 150.3 MB
VADSself 6.2 Ada Compiler 52.0 MB
TAE Plus 5.31 43.0 MB
Synthesizer Generator 4.2 25.7 MB
Eli4.4 14.8 MB
GNAT 3.05 Ada95 Compiler 14.8 MB
Motif 2.0 (source code) | 119.0 MB

Table 1. System Requirements for CAPS

C. EVALUATION

1. Solaris Compatibility Issues

Being based on Unix SVR4, Solaris 2.5 is neither source nor binary compatible with
SunOS 4.x. [Ref. 8] Therefore, applications developed for SunOS 4.x environment may not

run correctly under Solaris 2.5 environment. Many of the commands in SunOS 4.x either

20

have different functions from the SunOS version or they no longer exist in Solaris. A listing
of command changes can be found in the Solaris Transition Guide [Ref. 8], Appendix A,
Command Reference Table.

To help with migration, Solaris 2.5 provides two optional compatibility packages: the
SunOS/BSD Source Compatibility Package and the Binary Compatibility Package (BCP).
The SunOS/BSD Source Compatibility Package contains a collection of SunOS 4.x and BSD
commands, library routines, and header files not available with the Solaris 2.5 environment.
The SunOS/BSD Source Compatibility Package is located in the /usr/ucb directory. To
access the commands /usr/ucb should preceded /usr/bin in your path. [Ref. 8]

The Binary Compatibility Package allows existing SunOS 4.x applications (linked
statically and dynamically) to run under Solaris 2.5 without modification or recompilation.
[Ref. 8] The Binary Compatibility Package consists of the Solaris 2.x and OpenWindows
Binary Compatibility Packages which are optionally installed packages called SUNWbcp and
SUNWowbcp respectively. More information can be found in the Binary Compatibility
Guide. [Ref. 19]

It should be noted that these compatibility packages should serve only as a temporary
fix, since such support will not always be there in future releases of Solaris. Therefore, all
Solaris 2.5 applications should be developed using only the base environment. [Ref. 8]

2. X-Windows and Motif

Solaris 2.5 includes the OpenWindows™ 3.5 windowing environment, which is based

on X11 and Motif. Therefore, the Solaris 2.5 distribution comes with the X11RS5 and Motif

21

1.2.4 runtime libraries included. The X11 libraries are located /usr/openwin/1ib and the
Motif libraries are located in /usr/dt/1lib.

An early question in the research was whether or not separate installations of X-
Windows and Motif were required to build and run CAPS. In the case of Motif, this is a
considerable savings in cost if the runtime libraries could be used. Otherwise, the latest
versions, X11R6 and Motif 2.0, would be installed. It was determined that the runtime
libraries that are distributed with Solaris would be sufficient to run CAPS and TAE Plus 5.3],
which also requires X11R5 and Motif 1.2.3 or higher. Additionally, as long as the include
and library paths are properly setup during compilation, CAPS could be built dynamically
using the included runtime libraries. However, this is not the case when compiling CAPS
statically.

The executable files in the CAPS distribution are statically compiled to make them
more portable. It was discovered while attempting to statically compile and load the graphical
editor that the Motif library file 1ibXm.a is no longer included with Solaris. Starting with
Solaris 2.4, Sun stopped distributing the static Motif libraries in favor of the shared libraries.
From Sun’s bug report (Bug Id: 1195396) [Ref 20]:

The static version of the Motif library, 1ibXm. a is no longer provided in Motif

1.2.3, which is being shipped as part of SDK for Solaris 2.4. The justification

is that the shared (.so) runtime libraries are now bundled with the SunOS

under /usr/dt/lib.

To solve this problem, an explicit installation of Motif is required. However, in order

to build Motif from the source code, X11RS and its source code must be present. Therefore,

22

future work on CAPS Release 2 and the planned Release 3 will require that X11RS or
X11R6/6.1 and Motif 2.0 be built from source. This was not accomplished at this time due
to time constraints.

While X Windows is free, Motif must be purchased. Pre-compiled binaries can be
purchased from third-party vendors for much less than the $1000 educational site license for
the Motif source code from OSF. Nevertheless, both X windows and Motif are industry
standards and should be used.

3. TAE Plus

TAE Plus 5.31 was installed using pre-compiled binaries for Solaris.2.x and Motif 1.2.
TAE Plus also comes with Ada bindings which must be compiled separately with the user’s
Ada compiler [Ref. 21]. In the case of Solaris, the VADSself 6.2 Ada Compiler was used.

4. Synthesizer Generator and Eli

The Synthesizer Generator and Eli were both built for Solaris 2.5 from the source
code using the sun SPARCworks C/C++ Compiler (version 4.0) and the GNU C/C++
Compiler (GCC version 2.7.2). In general, greater success in compilation was achieved using
the GNU C compiler than the SPARCworks one.

5. Compiling, Linking, and Loading

Some general comments can be made regarding compiling software tools for the
Solaris environment. The “tighter” compilers available for Solaris may complain when
compiling anything other than strict ANSI C code, such as the older Kernighan and Ritchie

(K&R) C code. In this case, the -xs compiler option for SPARCworks and the

23

-traditional compiler option for GCC should be tried. Additionally, whenever compiling
for Solaris the -1socket and -1ns1 loader options must be included. I a compatibility
package is required for compilation of SunOS 4.x source code, then -L/usr/ucblib and
-I/usr/ucbinclude options will be needed. For more information on using the compilers
with Solaris, see the man pages for cc (SPARCworks) and gcc.

6. Shell Scripts

The major CAPS components are integrated using shell scripts. One of the major
concerns of porting CAPS to Solaris was the compatibility of the shell scripts due to changes
in the Unix commands from SunOS 4.3.x. Since the CAPS shell scripts use fairly basic shell
commands, this proved not to be a problem. Other than changes made to accommodate
changes in the Release 2 components, the only changes made due to Solaris were the
locations of external components, such as TAE Plus and VADSself. The convention for
Solaris is to place third-party software in the /opt directory.

Related to the shell scripts issue is the method used to display alerts generated from
within the shell scripts. The original shell scripts used the alert command to display
messages in a dialog box. This alert command was determined to be part of the InterViews
package. Rather than rebuild InterViews on Solaris for just that one command, an alternative
was found that provided the same capabilities and more. The alternative, xmessage, is a free
X Windows contrib, which was compiled statically using GCC 2.7.2 and provided as part of

the CAPS distribution. An alert script that calls xmessage with the appropriate options was

24

created in a manner such that it is used the same way as the InterViews alert command.
Thus no changes were needed in any of the scripts that used the alert command.

A note should be made that the compilation of xmessage is not completely static.
When compiling statically, a static link is forced for all libraries and the compiler searches only
for the . a versions of the libraries. Unfortunately, 1ibd1 . a, which is required for xmessage,
is unavailable. According to the SunSolve Symptoms and Resolution Database (document
srdb/2220) [Ref. 22], the only solution is to compile xmessage statically except for 1ibdl
which is linked dynamically. The 1da command is very useful for determining and

troubleshooting the dynamic dependencies of an executable file.

25

26

IV. CONCLUSIONS AND FUTURE RESEARCH

A. SUMMARY

This thesis research has laid the ground work for future development of CAPS for the

Solaris operating system and its portability to other platforms and operating environments.

Table 2 provides a summary of accomplishments.

Task

Method

Installed Solaris 2.5 operating system

Installed from CDROM

Installed GNAT 3.05 Ada95 compiler and
GNU 2.72 C/C++ compiler on Solaris 2.5

Installed by using pre-compiled binaries
downloaded for Solaris 2.4

Installed TAE Plus on Solaris 2.5

Installed by using pre-compiled binaries
for Solaris 2.x and Motif 1.2

Ada bindings compiled using VADSself
6.2 compiler

Installed Synthesizer Generator on
Solaris 2.5

Installed Eli on Solaris 2.5

Built from source code using
SPARCworks 4.0 and GNU 2.7.2 C/C++
compilers

Compiled CAPS code on Solaris 2.5

Used C/C++ and Ada compilers for
Solaris with Motif 1.2.4 and X11RS5
runtime libraries

Table 2. Summary of Accomplishments

The Solaris 2.5 operating system and other programming tools were successfully

installed and configured on four research workstations, creating a useable working

environment. This has also generated interest within the Computer Science Department to
install Solaris on some of the departmental workstations.

The porting of CAPS to the Solaris 2.5 for Sun SPARCstations was a success;
however, several problems were encountered that will make porting to other platforms
difficult, but not impossible. These will require further research and I am confident they can
be overcome.

The major problem in porting CAPS to the Solaris operating system was acquiring
Solaris versions of the various tools needed to build CAPS. This problem is not limited to
just porting the system to Solaris, but to any other operating system or platform.

Related to this problem was the difficulty compiling tools such as the Synthesizer
Generator, Eli, and xmessage when the source code was available. Much of the older C code
was not compatible with the new tighter Sun SPARCworks compiler. More success was
achieved in this regard using the GNU C compiler. Additionally, compiler flags, includes, and
library paths had to be modified to accommodate differences with Solaris over SunOS.

Another concern porting CAPS to Solaris was the compatibility of shell scripts due
to changes in the Unix commands from SunOS 4.3.x. Some commands were changed, others
were replaced with new commands, and still others were deleted with no SunOS equivalent
provided. Since the CAPS shell scripts used fairly basic shell commands, this proved not to
be a problem with the current release. However, researchers should be aware of this potential
problem when developing future Solaris releases of CAPS with expanded capabilities and not

rely on any compatibility packages.

28

B. SUGGESTIONS FOR FUTURE WORK

CAPS is an evolving research project. As such there are ample opportunities for
further work. As a result of this research, several areas have been identified for further work
and improvement.

1. Alternatives to TAE Plus

A major stumbling block to porting CAPS to other platforms is its reliance on TAE
as the graphical user interface tool. TAE is only available on a limited number of platforms
(see TAE Plus Supported Platforms at http://www.cen.conytae/taepf.html) and is not free.
Additionally, the TAE support for Ada was designed around SunAda 1.1 and is currently the
only compiler that TAE directly supports. Use of another Ada compiler requires a significant
porting effort for the Ada TAE bindings. Alternatives to TAE should be investigated and
tried with CAPS. One promising possibility is Fresco, which is available for free from the X
Consortium (http://www.faslab.com/fresco/HowToGetIt.html).

2. Ada 95 Compiler Integration

Currently, CAPS and TAE produce Ada83 code and utilizes an Ada83 compiler.
Work is currently underway to have CAPS produce Ada95 code and take advantage of the
new features of the language. Research is needed to select one of the new Ada95 compilers
that are due out during the last quarter of 1996 and first quarter 1997 (ObjectAda from
Thomson Software and Spire from Rational Software Corporation) or the GNAT Ada95

compiler. However, to make a true Ada95 version of CAPS, the user interface tools must

29

be compatible with the Ada95 compiler, which is another problem with TAE. Also, work is
needed to incorporate the new Ada95 compiler in the tool interface and CAPS setup scripts.
3. Tools Interface
An improved user interface needs to be incorporated into CAPS. A class project for
the Advanced Software Engineering class (CS4520) during the Winter Quarter 1996 at NPS
produced such an improved interface that incorporates many of the tenets of good user

interface design, plus utilizes the World Wide Web to add an extra dimension to the help

facilities.

4. Personal Computer Version

Further research is needed to port CAPS to the personal computer (PC) / Intel
architecture. The Solaris operating system is already available for many platforms including
the PC. Solaris x86 is the Solaris version for high end personal computers. Further research
is needed to see if the port of CAPS to Solaris for Sun workstations can be transferred to a
PC running Solaris x86. Another option is to port CAPS to a PC running the Linux version
of Unix. Linux has the advantage of being freeware. Once again, the major obstacle will be
the user interface tool (a version of TAE is not available for the Intel architectures) and the
availability of a compatible Ada83/Ada95 compiler. It should be possible to build x86 and
Linux versions of Eli and the Synthesizer Generator from the source code.

5. Shell Scripts

CAPS is a collection of software modules which communicate with each other

through the use of shell scripts. As the complexity of CAPS grows, a more powerful scripting

30

language may be required. A possible candidate is the Perl Language, which is also available
for free (http://www.perl.com/perl/info/software.html). Alternatively, the scripts could be
eliminated by placing the system commands in an Ada wrapper. When porting to another
system, only the contents of the system calls in the Ada modules would have to be changed.

6. Alert Dialog Boxes

The CAPS Release 1 relied on the alert command which was provided as part of the
Interviews package. The alert command was used in the CAPS shell scripts to produce a
dialog box with an alert message informing the user that a task was completed successfully.
For Release 2, xmessage, a free X-Windows contrib, was statically compiled and used instead
of the Interviews alert. However, a better approach should be taken. There is already an alert
dialog box that was created with TAE within CAPS. The alert messages using xmessage
from the shell scripts should be incorporated into the Ada code using the CAPS alert dialog
box. This would provide a uniform look for all of the CAPS dialog boxes and would reduce
the reliance on outside programs.

7. New Environments

In the ever changing world of computers and software, new operating environments
are already appearing on the horizon which will need investigating. Such include a new
versions of Solaris (2.5.1), the Common Desktop Environment (CDE), and the latest
evolution of the X Window System, code named Broadway, which will offer the ability to

access and execute applications over the web.

31

C. CONCLUSION

If the intent is to continue distributing CAPS freely and to increase its usage by the
software engineering community, then every effort should be made to port CAPS to a wide
variety of platforms and to use tools that are either freeware (i.e., Fresco and X-Windows)

or are as low cost to the consumer as possible.

32

10.

11.

12.

LIST OF REFERENCES

Lugi, “Computer-Aided Software Prototyping,” IEEE Computer, Vol 24, No. 9,
September 1991.

Luqi, V. Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,”
IEEE Transactions on Software Engineering, October 1988.

Cooke, Robert P., Technology Transfer of the Computer-Aided Prototyping
System, MLS. Thesis, Naval Postgraduate School, Monterey, California, September
1996.

Lugqi, “Software Evolution Through Rapid Prototyping,” IEEE Computer, May
1989.

Lugi and M. Shing, “Teaching Hard Real-Time Software Development via
Prototyping,” Proceeding of the ACMI/IEEE International Workshop on Software
Engineering Education, May 1994,

Luqi, “Summary - What CAPS Will Do For Its Users”, forthcoming NPS
Technical Report, Computer Science Department, Naval Postgraduate School,
1996.

Sun Microsystems, Solaris Network Operating Environment, White Paper, Sun
Microsystems, 1995.

Sun Microsystems, Solaris 1.x to Solaris 2 x Transition Guide, Sun Microsystems,
November 1995.

Sun Microsystems, System Administration Guide, Volume II, Sun Microsystems,
November 1995.

Sun Microsystems, Solaris 2.5: The Gateway to Multiarchitecture Applications,
available from http:// www.sun.com/solaris/2.5/multi-arch.html.

Gildea, S., X Window System, Version 11, Release 6 Release Notes, X
Consortium, May 16, 1994.

Open Software Foundation, The New User Interface Hybrids: Integrating User
Environments with OSF/Motif, OSF White Paper, March, 1994.

33

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Open Software Foundation, OSF/Motif 2.0 Data Sheet, OSF-M-DS-694-1, Open
Software Foundation, Inc., June 1994.

Century Computing, TAE Plus Overview, Century Computing, Inc., September,
1993.

Century Computing, Release Notes for TAE Plus Version 5.31, Century
Computing, Inc., May, 1995.

GrammaTech, The Synthesizer Generator Reference Manual, Release 4.2,
GrammaTech, Inc., Ithaca, New York, 1995.

Eli Overview, available from http://www.cs.colorado.edu/~eliuser/ExplainEli.html.

Brockett, Jim, The Computer-Aided Prototyping System (CAPS): Installation
Manual, CAPS Release 1, Naval Postgraduate School, Monterey, California,
October, 1994.

Sun Microsystems, Binary Compatibility Guide, Sun Microsystems, November
1995.

Sun Microsystems, Sun Bug Report (Bug Id: 1195396), SunSolve Online,
http://192.9.9.24/.

Sun Microsystems, SunSolve Document srdb/2220, SunSolve Online,
http://192.9.9.24/.

Century Computing, TAE Plus Ada Reference Manual, Century Computing, Inc.,
September, 1993.

34

BIBLIOGRAPHY

Anderson, G. and P. Anderson, The UNIX™ C Shell Field Guide, Prentice Hall, 1986.

Berzins, V. and Luqi, “Rapidly Prototyping Real-Time Systems,” IEEE Software,
September 1988.

Berzins, V. and Luqi, Software with Abstractions, Addison-Wesley, 1991.

Boehm, B. W., T. E. Gray, and T. Seewaldt, “Prototyping Versus Specifying: A
Multiproject Experiment,” IEEE Transactions on Software Engineering, May 1984.

Brockett, Jim, The Computer-Aided Prototyping System (CAPS): A CAPS Tutorial,
CAPS Release 1, Naval Postgraduate School, Monterey, California, October, 1994,

Century Computing, TAE Plus Ada Reference Manual, Century Computing, Inc.,
September, 1993.

Century Computing, TAE Plus Overview, Century Computing, Inc., September, 1993.

Century Computing, TAE Plus Programmer’ s Manual, Century Computing, Inc.,
September, 1993.

Century Computing, TAE Plus System Manager’s Guide, Century Computing, Inc.,
September, 1993.

Century Computing, TAE Plus User Interface Developer’s Guide, Century Computing,
Inc., September, 1993.

Cummings, Mary Ann, The Development of User Interface Tools for the Computer-Aided
Prototyping System, M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1990.

Dixon, Robert Mobley, The Design and Implementation of a User Interface for the
Computer-Aided Prototyping System, M.S. Thesis, Naval Postgraduate School, Monterey,
California, September 1992.

Dougherty, D., sed & awk, O’Reilly & Associates, 1993.

35

GrammaTech, The Synthesizer Generator Reference Manual, Release 4.2, GrammaTech,
Inc., Ithaca, New York, 1995.

Grosenheider, Scott Robert, Enhancements for the CAPS Prototyping System Description
Language Syntax-Directed Editor, M.S. Thesis, Naval Postgraduate School, Monterey,

California, March 1996.
Lugqi, “Software Evolution Through Rapid Prototyping,” IEEE Computer, May 1989.

Lugqi, “A Graph Model for Software Evolution,” IEEE Transactions on Software
Engineering, August 1990.

Luqi, “Computer-Aided Software Prototyping,” IEEE Computer, Vol 24, No. 9,
September 1991.

Lugi, “Computer-Aided Prototyping for a Command-and-Control System Using CAPS,”
IEEE Software, January 1992,

Lugi and M. Ketabchi, “A Computer Aided Prototyping System,” IEEE Software, March
1988.

Luqi, V. Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,” IEEE
Transactions on Software Engineering, October 1988.

Luqgi and W. Royce, “Status Report: Computer-Aided Prototyping,” IEEE Software,
November 1991.

Lugi and M. Shing, “Teaching Hard Real-Time Software Development via Prototyping,”
Proceeding of the ACM/IEEE International Workshop on Software Engineering
Education, May 1994.

Luqi and M. Shing, “Real-Time Scheduling for Software Prototyping,” Journal of Systems
Integration, Vol. 6, Nos. 1/2, March 1996.

Ozdemir, Dogan, The Design and Implementation of a Reusable Component Library and
a Retrieval/lntegration System, M.S. Thesis, Naval Postgraduate School, Monterey,
California, December 1992.

Raum, Henry G., Design and Implementation of an Expert User Interface for the

Computer-Aided Prototyping System, M.S. Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

36

Reps, T. and T. Teitelbaum, The Synthesizer Generator: A System for Constructing
Language-Based Editors, Springer-Verlag, New York, 1989.

Schneiderman, B., Designing the User Interface, Addison-Wesley, 1987.
Sun Microsystems, Binary Compatibility Guide, Sun Microsystems, November 1995.

Sun Microsystems, Solaris 1.x to Solaris 2 x Transition Guide, Sun Microsystems,
November 1995.

Sun Microsystems, System Administration Guide, Volume I, Sun Microsystems,
November 1995.

Sun Microsystems, System Administration Guide, Volume II, Sun Microsystems,
November 1995.

SunSoft, Solaris Porting Guide, Prentice Hall, 1995.
Winsor, J., Solaris System Administrator’s Guide, SunSoft Press/Ziff-Davis Press, 1993.

Winsor, J., Solaris Advanced System Administrator’s Guide, SunSoft Press/Ziff-Davis
Press, 1993.

37

38

APPENDIX A. LOCAL SOLARIS SYSTEM INFORMATION

The following is a selected collection of notes on the installation and general
system administration of Solaris 2.5 on Naval Postgraduate School Computer Science
Department workstations (perseus, aldebaran, suns8, and suns9):

LOCAL INSTALLATION NOTES

Determine IP address from a departmental system:
ypcat hosts | grep <host name>

Add CDROM drive (if not installed):
halt

turn system off

install cdrom

turn system on

boot -r (to ensure system recognizes new devices)
probe-scsi (check devices recognized by the system)

Start installation:
boot cdrom

or
boot sd(0,6,2) for aldebaran

Domain Name Server:
compsci.nps.navy.mil

Subnet:
255.255.255.0

Possible Customizations:
select separate partition for /opt
rename /opt =¥ /var
rename /export/home =¥ /opt

Immediately after installation set up a swap file:
Note: Total swap space should be 2 times the RAM.

39

To prepare an empty partition for a swapfile:
at -k

umount /<partition>
newfs -m 3 /dev/dsk/... NOTE: only do this on an empty partition!
mount -a

Create and add a swapfile:
mkfile 64m /export/home/swapfilel (or /opt/swapfilel)

ASize of file.

swap -1
swap -s
swap ~a /<partiton>/swapfilel
swap -1
swap -s

Add swap file to /etc/vfstab file

Modify /etc/passwd:
for root change /sbin/sh to /usr/bin/csh

Modify /etc/hosts:
copy /etc/hosts from libra as /etc/hosts-master
append libra’s /etc/hosts information to /etc/passwd and remove redundant entries.

To be able to handle different shells, create /etc/shells containing the following:
/bin/csh
/bin/sh
/usr/local/bin/tcsh

Default Computer Science Department Files:
/users/workl/default/

Determine path of Open Windows:
which openwin

Start Open Windows:
/usr/openwin/bin/openwin

~To eject CDROM

eject

40

SYSTEM INFORMATION

perseus:
131.120.1.38
64 MB RAM
424MB Internal
/
Jusr
/var
424MB Internal
fopt
1200MB External
/work
/usr/local
Remote Mounted
/local/lang
8mm Tape Backup

aldebaran:
131.120.1.39
64 MB RAM
424MB Internal
1600MB External

SOLARIS SYSTEM ADMINISTRATION NOTES

To add/remove an external device:
halt

turn system off

install device (ie. CDROM)

turn system on

boot -r (to ensure system recognizes new devices)
probe-scsi (check devices recognized by the system)

To remove PROM password:
setenv security-mode
reset

Rebooting as a single user:
b sd(0,0,0)vmunix -s
csh
setenv TERM sun now you can use vi to make changes to bring system

Starting/Stopping NFS:
sh /etc/init.d/nfs.client stop
sh /etc/init.d/nfs.client start

sh /etc/init.d/nfs.server stop
sh /etc/init.d/nfs.server start

Stopping the system if it freezes during boot-up:
press STOP/L1 and “a” simultaneously
halt
boot as a single user

Various Commands:

b sd(0,0,0)vmunix -s reboot as single user
catman -w creates “windex” to be used by man -k
dmesg show hardware found on system
find . -name <name> -print finds filename from current directory and
displays its location
nslookup <host name>
pkginfo displays installed packages
ping <host name>
reboot reboots system
suninstall run install program if already in memory
Various Files:
42

/.thosts

/etc/dfs/dfstab edit this file to export files to other systems

/etc/hosts

/etc/hosts.equiv

/etc/nsswitch.conf

/etc/passwd contains user information

/etc/printcap contains printer information

/etc/resolv.conf

[etc/vfstab contans list of remote disks to mount
use mkdir <directory names to create the mount
points

T Shell (tcsh) Commands:
h shows history of commands
t<command #> redoes command in history file

~<stringl>“<string2> replaces stringl in previous command wit string2

To determine a user’s id #:
ypcat passwd | grep <user name>

Admin Tool:
admintools&

Creating User Accounts:
use admintool
or

cut & paste usrs from /etc/passwd on another machinbe to the new /etc/passwd file
passwd <username>
pwconv

Note: For Solaris, su <username> does not cause the environment to change. You need
to manually switch to the new home directory and source the .cshrc file. Alternatively,
use su - to get new user’s environment.

43

Example Full Backup Script:

#1/bin/csh -f

echo "rewinding®
mt -f /dev/rmt/0 rewind

fsck /

fsck /var

fsck /usr

fsck /opt

fsck /work
fsck /usr/local

echo "dumping root"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo "dumping /var"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo "dumping /usr"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo "dumping /opt"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo "dumping /work"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo *dumping /usr/local"
ufsdump Oufbsd /dev/rmt/On 126 6000

echo "*rewinding"
mt -f /dev/rmt/0 rewind

54000

54000

54000

54000

54000

54000

/var

/usr

/opt

/work

/usr/local

Example Incremental Backup Script:

#!/bin/csh -£f

echo "rewinding"

mt -f /dev/rmt/0 rewind
fsck /

fsck /var

fsck /usr

fsck /opt

fsck /work

fsck /usr/local

echo "dumping root®
ufsdump lufbsd /dev/rmt/On 126 6000 54000 /

echo "dumping /var®
ufsdump lufbsd /dev/rmt/On 126 6000 54000 /var

echo "dumping /usr"
ufsdump lufbsd /dev/rmt/On 126 6000 54000 /usr

echo *“dumping /opt'
ufsdump lufbsd /dev/xmt/On 126 6000 54000 /opt

echo "dumping /work"
ufsdump lufbsd /dev/rmt/On 126 6000 54000 /work

echo "dumping /usr/local®
ufsdump lufbsd /dev/rmt/On 126 6000 54000 /usr/local

echo "rewinding"
mt -f /dev/rmt/0 rewind

Remote Backups:

Make changes similar to the folowing:
echo "rewinding®
rsh perseus mt -f /dev/rmt/0 rewind

echo "dumping root*®
ufsdump Oufbsd perseus:/dev/rmt/On 126 6000 54000 /

Restoring or Checking Tape Files:

ufsrestore -ibf 126 /dev/rmt/0

Advancing to Next Tape Block:

mt -f /dev/rmt/On fsf 1

45

Mounting a Local Disk:
mount /dev/dsk/c0tld0s0 /mnt
Mounting a NFS File System From Another Host:
mount -F nfs -o suns8:/opt /opt
For this to work, the other host must “share” the file (see below).
Sharing a NFS File system With Other Hosts:

Use the following command at the command prompt or in the /etc/dfs/dfstab file for
automatic sharing at boot-up:

share -F nfs -o rw=perseus /opt

To allow another host to be root, use:

share -F nfs ~o rw=perseus, root=pegasus /opt

Unmounting a File System:

umount /mnt

Note - the partition to be unmounted cannot be in use (part of the current directory’s
path).

Setting X-Windows Environment:

set path=($path ...)

set path = (/opt/local/X11R6/bin $path)

which xinit

setenv LD_LIBRARY PATH S$LD_LIBRARY_ PATH\:/opt/local/X11Ré6/1lib

xinit -- /usr/openwin/bin/Xsun

46

Miscellaneous Commands:

env
/usr/openwin/bin/kbd_mode -a
rcp

rsh
umask 022
umask 077

xwd | xpr -device ps | lpr

YView Dynamic Libraries of an Execuable:

144 <filename>

displays current environment
resets keyboard

remote copy

remote shell command

captures and prints an X-Window

47

Formatting and Mounting an Optical Disk:

Determine device name of optical disk by typing dmesg an reviewing the boot messages.
On wonton it is sd3 and on sun60 it is sd2.

- Run formatting program
format sd2

select type as MaxOptixTahiti 2
- Label each side (no need to format)
- Create file system (caution: destroys any old data on disk!)

newfs -c¢ 32 -i 16384 -t 8 -C 6 /dev/rsd2c

- Mount optical disk

mount /dev/sd2c /optic

Floppy Disks:

Solaris automounts Unix and DOS floppies when detected. Solaris can also format, read,
and write DOS floppies using standard Unix commands without using external software
such as mtools.

volcheck causes Solaris to check for a floppy
cd /floppy change diretory to the floppy

cd exit floppy’s directory before ejecting
eject floppy ejectsthe floppy from the drive

If needed, the usual device names for the floppy drive are:
/dev/rfd0c
/dev/£d0c

48

Environment Setup:

The following .cshrc file was used on suns8 to run the Solaris version of CAPS:

#!/bin/csh
CAPS LAB SOLARIS 2.5 SYSTEM ONLY .CSHRC FILE

Set echo below inorder to echo each command as it is executed.
Useful for troubleshooting.
set echo

setenv LM_LICENSE_FILE
/local/license/license.dat:/local/license/license.dat.scholarpak

set path = (/opt/local/bin /opt/cygnus/bin \
/bin /usr/bin /usr/ccs/bin /opt/X11RS5/bin /usr/sbin \
/etc /usr/etc /usr/share/lib /opt/java/bin \
/local/lang /usr/local/bin /usr/openwin/bin /usr/ucb .)

setenv LD_LIBRARY_PATH /usr/openwin/lib\:/usr/ucblib\:/usr/1lib

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:/usr/X11R5/1ib\:/opt/local/lib
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH\:/opt/cygnus/lib

setenv MANPATH /usr/share/man\:/opt/local/man\:/opt/X11R5/man

setenv MANPATH SMANPATH\:/opt/ICS/Motifl.2.4/usr/man:/usr/man:

setenv MANPATH S$SMANPATH\:/usr/openwin/man\:/opt/cygnus/man

set noclobber

set ignoreeof

limit coredumpsize 0
umask 077

skip remaining setup if not an interactive shell
if ($?USER == i1 $?prompt == 0) exit

setenv OPENWINHOME /usr/openwin

setenv AB_CARDCATALOG /opt/SUNWabe/ab_cardcatalog
alias answerbook /usr/openwin/bin/answerbook
setenv EDITOR /usr/bin/vi

setenv CLASSPATH .\:/opt/java/lib/classes.zip

environment stuff so we look like BSD unix
set history=40

alias cd ‘ced \!*;echo Scwd'
alias cp ‘cp -1

alias mv ‘mv -i’

alias pwd ‘echo $cwd’

#alias rm 'rm -1

alias print 'enscript -G -2r!
alias h history

alias 1s 'ls -p°¢

alias 11 ‘ls -al’

49

alias la 'ls -a'

alias lo logout

alias m ‘more'’

alias mail 'mail -hr°

alias man 'man -F°’

alias "L clear

alias . 'echo Scwd’

alias .. 'set dot=Scwd;cd ..
alias , 'ed $dot !
alias open 'chmod go+r'
alias shut 'chmod go-r'
alias bye logout

#set up for which csh
#set prompt based on shell type
switch ($shell:t)
case csh:
set prompt = "“hostname | sed s/IS// :
breaksw
case tcsh:
set prompt="%S%m:%/>>%s
breaksw

default:
echo "Don't know which shell, you get default prompt"

endsw

#software environment stuff
setenv EMACS solemacs
setenv XDEVICE /dev/fbs/cgsix0

set up for X11R6
if (-4 /opt/X11R6) then
#set path = (/opt/X11R6/bin $path)
#setenv LD_LIBRARY_PATH S$LD_LIBRARY_ PATH\:/opt/X11R6/1ib

endif

set up for GNAT Ada95 Compiler for Solaris
if (-d /opt/gnu) then

set path = (/opt/gnu/bin $path)
#alias usegnat 'source /usr/local/gnat/usegnat’
endif

FMHOME line added by the FrameMaker setup program
if ($?TERM) then
switch (STERM)
case sun-cmd:
setenv FMHOME /opt/frame; set path=($path $FMHOME/bin)
breaksw;
case xterm:
setenv FMHOME /opt/frame; set path=($path $FMHOME/bin)
breaksw;
endsw

else
alias maker ‘'echo *frame not supported for this TERM"'

50

endif

set up for Vads self compilers
if(-d /opt/vads) then
set path = ($path /opt/vads/bin)
setenv LM_LICENSE_FILE

/local/license/licenses_combined\:/local/license/license.dat.scholarpak

setenv MANPATH $MANPATH\:/opt/vads/man
#alias a.mklib a.mklib -f . /opt/vads/self/standard
endif

setup for local sun software

if(-d /opt/SUNWspro) then
set path = (/opt/SUNWspro/SC4.0/bin $path)
setenv LD_LIBRARY_PATH /opt/SUNWspro/SW3.1/1ib\:S$SLD_LIBRARY_PATH
setenv LD_LIBRARY_PATH /opt/SUNWspro/SC4.0/1ib\:$LD_LIBRARY_ PATH
setenv MANPATH /local/lang/man\ :$MANPATH

endif

setup up for campus sun software

this works with both SUNOS and SOLARIS

if(-d /local/lang) then
set path= ($path /local/lang/bin)
setenv LD_LIBRARY_PATH S$LD_LIBRARY_PATH\:/local/lang/SC3.0.1/1ib
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:/local/lang/SW3.0.1/1ib
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH\:/local/lang/lib
setenv MANPATH S$MANPATH\:/local/lang/man

endif

set up for TAE Plus 5.31 for Solaris
if (-d /opt/tae5.31) then
setenv TAE /opt/tae5.31
source $TAE/bin/csh/taesetup
set path =($path $TAEBIN $TAEDEMOBIN)
setenv MANPATH $MANPATH\:S$TAEMAN\:S$TAE/Xtae/man
setup for TAE with ada bindings

setup for Motif under Solaris

setenv OPENWINHOME /usr/openwin

setenv MOTIFHOME /usr/dt

setenv LD_LIBRARY_PATH S$MOTIFHOME/lib:S$SOPENWINHOME/lib
setenv UIDPATH %U: /opt/SUNWmEdm/1lib/uid/svu

setenv XFILESEARCHPATH SMOTIFHOME/1lib/%T/%N%S

setenv XMBINDDIR SMOTIFHOME/lib/bindings

set path=($OPENWINHOME/bin $path)

set path=($path $MOTIFHOME/bin) # for uil and xmbind
set path=($path /opt/SUNWmfwm/bin) # for mwm

setenv MANPATH ${MANPATH} :${OPENWINHOME)} /man
setenv MANPATH ${MANPATH}:${MOTIFHOME)} /man
setenv MANPATH ${MANPATH):/opt/SUNWmfwm/man

endif

51

setup for CAPS (Solaris)

setenv CAPSHOME /export/home/irwin/CAPS.2.SOLARIS.TEST
set path =($path SCAPSHOME/bin)

source $CAPSHOME/bin/CAPSsetup

set up for Grasp
if (-d /opt/graspada) then
setenv GRASP_HOME /opt/graspada

set path = ($path $GRASP_HOME/bin)
alias grasp grasp.static
endif
echo " WELCOME to SOLARIS"
52

Initial .cshrc File:

@(#)cshre 1.11 89/11/29 SMI
set up for SOLARIS 2.5 system only, not SUN OS

set path = (/opt/local/bin \
/bin /usr/bin /usr/ccs/bin /usr/sbin \
/etc /usr/etc /usr/share/lib /local/lang /usr/local/bin
/usr/openwin/bin /usr/ucb .)

set default man and library paths
setenv MANPATH /usr/man\:/opt/local/man:/local/shareware/unix/man
setenv LD_LIBRARY _PATH /usr/lib\:/usr/local/lib:/opt/local/lib

umask 077
set noclobber
limit coredumpsize 0

skip remaining setup if not an interactive shell
if ($?USER == Il $?prompt == 0) exit

set history=40

alias h history
alias man ‘'man -F'
alias mail ‘mail -hr’

setenv OPENWINHOME /usr/openwin
setenv AB_CARDCATALOG /opt/SUNWabe/ab_cardcatalog
alias answerbook /usr/openwin/bin/answerbook

setup for X-Emacs for Solaris
#setenv EMACS solemacs
#setenv XDEVICE /dev/fbs/cgsix0

set up for X11R6 for Solaris

#if (-4 /opt/X11R6) then

set path = (/opt/X11R6/bin $path)

setenv LD_LIBRARY_ PATH S$LD_LIBRARY_PATH\:/opt/X11R6/1lib
setenv MANPATH S$MANPATH\:/opt/X11R6/man

#endif

set up for GNAT 3.03 Ada Compiler for Solaris
if (-d /opt/gnu) then

set path = (/opt/gnu/bin $path)
endif

set up for TAE Plus 5.31 for Solaris
if (-4 /opt/tae5.31) then
setenv TAE /opt/tae5.31
source $TAE/bin/csh/taesetup
set path =($path S$TAERIN $TAEDEMOBIN)
setenv MANPATH S$SMANPATH\:S$TAEMAN\:S$TAE/Xtae/man
setup for TAE with ada bindings

53

endif
#Setup for CAPS

#setenv CAPSHOME /export/home/irwin/CAPS.RELEASE.1
#source SCAPSHOME/bin/CAPSsetup

54

Default .cshre File:

#!/bin/csh
CAPS LAB SOLARIS 2.5 SYSTEM ONLY .CSHRC FILE

Set echo below inorder to echo each command as it is executed.
Useful for troubleshooting.
set echo

setenv LM_LICENSE_FILE
/local/license/license.dat:/local/license/license.dat.scholarpak

set path = (/opt/local/bin /opt/cygnus/bin \
/bin /usr/bin /usr/ccs/bin /opt/X11R5/bin /usr/sbin \
/etc /usr/etc /usr/share/lib /opt/java/bin \
/local/lang /usr/local/bin /usr/openwin/bin /usr/ucb .

setenv LD_LIBRARY_PATH /usr/openwin/lib\:/usr/ucblib\:/usr/1lib

setenv LD _LIBRARY_ PATH
SLD_LIBRARY_PATH\:/usr/X11R5/1ib\:/opt/local/lib

setenv LD_LIBRARY_PATH $LD_LIBRARY_ PATH\:/opt/cygnus/lib

setenv MANPATH /usr/share/man\:/opt/local/man\:/opt/X11R5/man

setenv MANPATH SMANPATH\:/opt/ICS/Motifl.2.4/usr/man:/usr/man:

setenv MANPATH S$SMANPATH\:/usr/openwin/man\:/opt/cygnus/man

set noclobber

set ignoreeof

limit coredumpsize 0
umask 077

skip remaining setup i1f not an interactive shell
if ($?USER == || $?prompt == 0) exit

setenv OPENWINHOME /usr/openwin

setenv AB_CARDCATALOG /opt/SUNWabe/ab_cardcatalog
alias answerbook /usr/openwin/bin/answerbook
setenv EDITOR /usr/bin/vi

setenv CLASSPATH .\:/opt/java/lib/classes.zip

environment stuff so we look like BSD unix
set history=40

alias cd ‘cd \|*;echo Scwd’'
alias cp ‘cp -i'

alias mv ‘mv -i'

alias pwd 'echo $cwd'

alias rm ‘rm -i!

#alias print ‘enscript -G -2r°
alias h history

alias 1ls 'ls -p°

alias 11 ‘ls -al’

alias la 'ls -at

55

alias lo logout

alias m ‘more'’

alias mail 'mail -hr'

alias man 'man -F°'

alias ~L clear

alias . techo $cwd®

alias .. 'set dot=$cwd;cd ..
alias , ‘ed $dot !
alias open ‘chmod go+r'

alias shut ‘chmod go-xr'

alias bye logout

#set up for which csh
#set prompt based on shell type
switch($Sshell:t)
case csh:
set prompt = "“hostname | sed s/IS// : *
breaksw
case tcsh:
set prompt="%S%¥Im:%/>>%s
breaksw
default:
echo "Don't know which shell, you get default prompt"

endsw

#software environment stuff
setenv EMACS solemacs
setenv XDEVICE /dev/fbs/cgsixO0

set up. for X11R6
if (-d /opt/X11R6) then

#set path = (/opt/X11R6/bin S$path)

#setenv LD_LIBRARY_ PATH S$LD_LIBRARY_ PATH\:/opt/X11R6/1lib
endif

set up for GNAT AdaS5 Compiler for Solaris
if (-d /opt/gnu) then

set path = (/opt/gnu/bin $path)

#alias usegnat 'source /usr/local/gnat/usegnat'
endif

FMHOME line added by the FrameMaker setup program
if ($?TERM) then
switch ($TERM)
case sun-cmd:
setenv FMHOME /opt/frame; set path=($path $FMHOME/bin)
breaksw;
case xterm:
setenv FMHOME /opt/frame; set path=($path S$FMHOME/bin)
breaksw;
endsw
else
alias maker 'echo "frame not supported for this TERM"'
endif

56

set up for Vads self compilers
if(-d /opt/vads) then
set path = ($path /opt/vads/bin)
setenv LM_LICENSE_FILE

/local/license/licenses_combined\:/local/license/license.dat.scholarpak

setenv MANPATH $MANPATH\:/opt/vads/man
#alias a.mklib a.mklib -f . /opt/vads/self/standard
endif

setup for local sun software

if(-d /opt/SUNWspro) then
set path = (/opt/SUNWspro/SC4.0/bin $path)
setenv LD_LIBRARY_ PATH /opt/SUNWspro/SW3.1/1ib\:$LD_LIBRARY_PATH
setenv LD_LIBRARY_ PATH /opt/SUNWspro/SC4.0/1ib\:SLD_LIBRARY PATH
setenv MANPATH /local/lang/man\ :SMANPATH

endif

setup up for campus sun software

this works with both SUNOS and SOLARIS

if(-d /local/lang) then
set path= ($path /local/lang/bin)
setenv LD_LIBRARY_PATH $SLD_LIBRARY_PATH\:/local/lang/SC3.0.1/1ib
setenv LD_LIBRARY_PATH $LD_LIBRARY_ PATH\:/local/lang/SW3.0.1/1lib
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH\:/local/lang/lib
setenv MANPATH S$MANPATH\:/local/lang/man

endif

set up for TAE Plus 5.31 for Solaris
if (-d /opt/tae5.31) then
setenv TAE /opt/tae5.31
source $TAE/bin/csh/taesetup
set path =($path STAEBIN S$TAEDEMORIN)
setenv MANPATH $MANPATH\ :S$TAEMAN\ :S$TAE/Xtae/man
setup for TAE with ada bindings
endif

#Setup for CAPS
#setenv CAPSHOME /export/home/irwin/CAPS.RELEASE.1
#source $CAPSHOME/bin/CAPSsetup

echo " WELCOME to SOLARIS*

57

Example /etc/dfs/dfstab From suns8:

place share(1lM) commands here for automatic execution

on entering init state 3.

#

share [-F fstype] [-o options] [-d "<text>"] <pathname> [resource]

.e.g,

share -~F nfs -o rw=engineering "home dirs" /export/home2

share -F nfs -o ro=suns9:perseus:aldebaran /opt

share -F nfs ~o rw=suns9:perseus:aldebaran /workl

share -F nfs -o rw=suns9:perseus:aldebaran /work2

share -F nfs -o rw=suns9:perseus:aldebaran /work3

share -F nfs -o rw=suns9:perseus:aldebaran /work4

Example /etc/vfstab From suns8:

device device mount FS fsck mount mount

to mount to fsck point type pass at boot options

#

#/dev/dsk/cld0s2 /dev/rdsk/c1d0s2 /usr fs 1 ves -

fd - /dev/fd fd - no -

/proc - /proc proc - no -

/dev/dsk/c0t3d0sl - - swap - no -

/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 / ufs 1 no -

/dev/dsk/c0t3d0s6 /dev/xrdsk/c0t3d0s6 /usr ufs 1 no -

/dev/dsk/c0t3d0s3 /dev/rdsk/c0t3d0s3 /var ufs 1 no -

/dev/dsk/c0t1d0s7 /dev/rdsk/c0t1d0s7 /export/home ufs 2 yes -

/dev/dsk/c0t3d0s5 /dev/rdsk/c0t3d0s5 /opt ufs 2 yves -

swap - /tmp tmpfs - ves -

/export/home/swapfilel - - swap - no -

/dev/dsk/c1t1d0s6 /dev/rdsk/clt1d0sé6 /workl ufs 2 yves -

/dev/dsk/clt3d0s6 /dev/rdsk/clt3d0s6 /work2 ufs 2 yes -

/dev/dsk/c1t0d0s6 /dev/rdsk/clt0d0s6 /work3 ufs 2 yes -

/dev/dsk/clt2d0s6 /dev/rdsk/clt2d0s6 /workd ufs 2 yves -
58

Example /etc/auto_direct From suns8:

Key

first add path stuff

/var/mail
/opt/vads
/opt/SUNWspro
/opt/frame
/opt/java
/opt/cygnus

/export/home/berzins

/n/sunS51/work
/n/sun52/work
/n/sun53/work
/n/sun54/work
/n/sun55/work
/n/sun57/work
/n/suns5/work
/n/suns7/work

[Mount-options]

-rw, intr, soft
-ro,intr, soft

-rw, intr, soft
-rw, intr, soft
-rw,intr, soft
-rw, intr, soft
-rw, intr, soft
-rw, intr, soft
-rw, intr, soft
-rw, intr, soft
-rw, intr, soft

Example /etc/auto_home From suns8:

Home directory map for automounter

#
+auto_home

Example /etc/auto_local From suns8:

#
#license
license
help
lang

locations

taurus:/var/spool/mail

virgo:
virgo:
virgo:
virgo:
virgo:
suns9:
: /work
sunS2:
sunb3:
sunb4:
sunb55:
sun57:
sunsb-
suns7-

sun51

/lang/solaris/vadsé6.2.3
/lang/solaris/SUNWspro
/opt/local/frame
/opt/local/java
/opt/cygnus
/export/home/berzins

/work
/work
/work
/work
/work
caps: /work
caps:/work

libra:/usr/local/license
virgo:/sunos/license

virgo:/sunos/doc
virgo:/lang/solaris/SUNWspro

Example /etc/auto_master From suns8:

Master map for automounter

#

/_
/local
/users

auto_direct
auto_local
auto_home

59

-ro, intr, soft
-ro,intr, soft
-xw,intr, soft

60

APPENDIX B. SHELL SCRIPTS

This appendix contains the CAPS Release 2 shell scripts (presented in alphabetical order).
The shell scripts are used to integrate the individual CAPS modules. The scripts will work
unmodified on both Solaris and SunOS systems. The CAPSsetup script may need editing to tailor
CAPS to a particular system’s environment.

CAPS Release 2 Scripts:

alert

browse_sb.script

caps

caps_m.exe

CAPSsetup

compile.script

edit_ada.script

edit_interface.script

edit_psdl.script

execute.script

make.script

save_ada_files

show_ops.exe

tae_to_caps

temp_dir.script

translate.script

61

alert

FEEHFSHHHSHHH SR FHHHFHEHEH RS S H 4 HHFF S L HF S S S S H RS SRS S E S HE RS 4 H 4
module: alert

Description:
This script is used to pass an alert message to xmessage with the

proper formatting.

Usage:

echo <text> | alert

Outputs:

Displays the text in a dialog box at the center of the screen.

#
#HESFESH S S HH AR FFF IS SRR S S S SRS S SRS S SRS F SRS FE R IR H S E S S S ERH 4

SCAPSHOME/bin/xmessage.static -geometry 352x84+447+334 \
-fn "-*-courier-bold-r-*-*-18-*-*-*_*_k_k_x" _hg gray \
-title "CAPS ALERT" -buttons OK -default OK -file -

62

browse_sb.script

#!/bin/csh

iad s it s E s BT ITE LRI Y
#
Placeholder for the Software Base Module which is not implemented in
this CAPS Release.
#

FHEFFRERFHF AR EE R SRR RS SS S S S S S S S HHH S S S S S H H RS R R R R S S 44

echo "The Software Base is not implemented in CAPS Release 2"

63

caps
#!/bin/csh -£f

R AT ES LTSS SIS ELSES ST LSS IS LIS SIS LS L
module: caps

Description:

This script is used to activate the CAPS user interface.

It creates the necessary directories under $HOME/.cap

if the .cap directory does not exist when executing caps

Usage:

caps

Changes:

8/13/96 VB

Rename caps93d to caps_d and caps93m to caps_m

to decouple the file names from the version of the system.
8/28/95 MTS

Replace the call "$CAPSHOME/bin/caps93d.exe&" with

" (SCAPSHOME/bin/caps93d.exe; rm $HOME/.caps/temp/*)&"

in order to clean up the .caps/temp directory

when quitting caps.

#
#

HEEEF S EFHF S A S S H AR E RS S S R R S R R R R

unset noclobber

if (! -4 S$HOME/.caps) then
echo "Making .caps directory"
mkdir SHOME/.caps
cp -rp SCAPSHOME/demo/* S$SHOME/.caps
chmod 755 SHOME/.caps
endif

if (! -d SHOME/.caps/temp) then
echo "Making .caps/temp directory*
mkdir S$HOME/.caps/temp
chmod 755 $HOME/.caps/temp

endif

chmod ~R u+w $HOME/.caps &

set CAPS_version = “designer"
set DDBName = SUSER

setenv LD_LIBRARY_PATH $CAPS_LD_PATH
set parameters from flags

set n = $#argv
while ($n >= 1)
switch ($1)
case "-m":
shift
set CAPS_version = “managex”

64

@n-=1
breaksw

case "-d":
shift
set DDBName = $1
setenv CAPS93_DDB $DDBName
shift
@n -=2
breaksw

endsw

end

switch ($CAPS_version)

=k

H ok

case "designer":
echo "executing CAPS in designer mode"

replace o0ld code
$CAPSHOME/bin/caps93d. exe&
by the following line

(SCAPSHOME/bin/caps_d.exe; rm $HOME/.caps/temp/*)&
breaksw

case "manager':
echo 'executing CAPS in manager mode"

replace old code
SCAPSHOME/bin/caps93d. exe&
by the following line

(SCAPSHOME/bin/caps_m.exe; rm $HOME/.caps/temp/*)&
breaksw

endsw

65

caps_m.exe

#!/bin/csh
CEE ISR RS EEE S EE AL SSSELST I EEEEEE L L
#

Placeholder for the CAPS Manager Mode Interface which is not
implemented in this CAPS Release. A message is echoed to the terminal
window and CAPS is started in the default Designer Mode.

#
S HHHHHEH SR R R R R R R S R S R R R R R R R R R R

= S Sk e

echo n n
echo "The Manager Mode is not implemented in CAPS Release 2."
echo "Starting CAPS in Designer Mode ..."

SCAPSHOME/bin/caps_d.exe

66

CAPSsetup

FERGFHHHAARH RS H R R EHH SRS R S S S B S HHHH S H S S S S HH R RS ¥
#

CAPSsetup

This file sets up environment variables and library paths for CAPS to
operate properly. It also checks if external programs used by CAPS
are present and sets additional variables for them. Such external
programs include Openwindows, TAE Plus, and your Ada compiler.

#
#
#
#
#
#

This file should be sourced from within the user's .cshrc file. It may
need editing to tailor it to your system's environment.

Example use in a user's .cshre file:
(Should be placed after setups for CAPS external programs)

#

#

#

#

#

#

#

#

#

if (-4 /opt/caps) then

setenv CAPSHOME /opt/caps
set path =($path $CAPSHOME/bin)
source $CAPSHOME/bin/CAPSsetup
endif

#

#

#

#

#

#

#

#
#
#
#
#
#
#
#
#
#
#
#
#
setup for caps
#
#
#
#
#
#
NOTE: $CAPSHOME needs to be defined before sourcing CAPSsetup. #
Additionally, CAPSsetup assumes that TAE Plus and the Ada Compiler have #
already been correctly setup for use in accordance with their setup #
instructions. In Particular, S$TAE and S$TAEADALIB need to be set. #

#

#

RS EL IS I EL LIS EE LRSS EE T I T EYY FTE Y
HESHHEFBFRE RS S A SRS RS S HSF S H G SR H S S F S FHF S H S S S FHEF RS H S H S F S S H S S S S B4 4

Tool location definitions
HHEHSHHARSHEHFHHHFFFF R F S H S S H S F S S S S S RS RS H SRS SRS S S S S S H 44

set TYPE = ‘uname -r°

if (STYPE:r:r == "5") then

We are on a Solaris version 2.X system - set paths for Solaris

path to Open Windows
setenv OPENWINHOME /usr/openwin

path to the Sun/Verdix Ada root directory
setenv ADA_HOME /opt/vads

path to Vads Ada editor
setenv AEDIT_BASE /opt/VADSedit

else
We are on SunOS version 4.x - set paths for SunoOsS

path to Open Windows
setenv OPENWINHOME /usr/openwin

path to the Sun/Verdix Ada root directory

67

setenv ADA_HOME /usr/local/SuniAda

path to Vads Ada editor
setenv AEDIT_BASE /usr/local/VADSedit

endif

FERFREFF RS R R FEHF SRS R R S R S R R S R S R H

Do not modify anything below this line
LEEEE TS SRS E L

#
CAPS
#
if (-d $CAPSHOME) then
setenv CAPS_COMPILER_FLAGS -~1X11
setenv CAPS_DDB S$Suser
setenv CAPS_CPU_RATIO 1.0
set path = (SCAPSHOME/bin $path)
else
echo "Environment variable CAPSHOME is not set properly,"
echo "See CAPS Installation Guide"
exit
endif

#
OPENWIN
#
if (-4 SOPENWINHOME) then
set path = ($path SOPENWINHOME/bin)
set MOTIF_LD_LIB = ":SOPENWINHOME/1lib"
else
echo "Could not find openwin®
set MOTIF_LD_LIB = *"

endif

¥

Ada compiler

#

#

Vads Self Ada Compiler

#

if (-4 $ADA_HOME) then
set ADA_LD_LIB = ""
set path = ($ADA_HOME/bin $path)

else

echo Ada compiler not found
set ADA_LD_LIB = “"
endif

TAE+

68

set up for TAE Plus 5.31 for Solaris

if (-d $TAE) then
set TAE LD_LIB = ":$TAEADALIB"

else
echo TAE not found or not properly setup
set TAE_LD_LIB = *"*

endif

#
VADSedit
#
if (-d $SAEDIT_BASE) then
set path = (SAEDIT_BASE/bin S$path)
endif

#
set up dynamic initialization for LD_LIBRARY_PATH
#

setenv CAPS_LD_PATH /usr/lib$ADA_LD_LIBSTAE_LD_LIBSMOTIF_LD_LIB

#

ALIASES

#

if (-4 /opt) then

for Solaris
alias 1lpr ‘'lp’

endif

69

compile.script

#!/bin/csh -f

FHESHSFHHH SR A SRS S B H S H A HH S F RS H RS S S H S FH S E SRS S F S H S H S S S S S H R F S S S E ¥
module: compile.script

Description:

This script is used by CAPS to compile a prototype.

Assumes $ADA_HOME, $TAE, and $TAEADALIB previously set by

CAPSsetup and the user's TAE setup.

Usage:

compile.script S$HOME prototype_name v.v

Inputs:

Files:

prototypeDir/prototypeName. *a

Outputs:

Files:

prototypeDir/ada subdirectory created if necessary

prototypeDir/bin subdirectory created if necessary

executable is prototypeDir/bin/prototypeName.exe

#
#
#
#
#

Changes:
9/23/96 DMI
Added entire path for compiler related commands by using the

SADA_HOME variable to make script independent of path setup.

8/31/96 DMI
Changed steps to determine correct compiler version to work with

versions 1.1 and higher of the VADSself Ada Compiler.
Set a.path to "-a S$TAEADALIB -L $prototypeDir/ada" instead of
*"-a $TAE/ada/lib/sund4 -L S$prototypeDir/ada" for portability.

5/22/96 VB
Set tmpDir to ®"$prototypeDir/temp" instead of "$1/.caps/temp" to avoid

#

#

#

#

#

#

#

multiple users writing to the same file.

8/28/95 MTS

replace all occurences of "/tmp/compile.script.temp"
by $tmpDir/compile.script.temp”

5/22/95 MTS

#
#
#
#

Set tmpDir to "$1/.caps/temp" instead of "/tmp" to avoid
multiple users writing to the same file.
22 s s s B s s LR LS SIS TLT LTI TR EEF TN
echo "Starting CAPS Compilation Subsystem"

FEHH4HHFEHHHFHHH S A S A B S S S H SR H S S SRS S S FFF SRS FHFHFFSH S F S S S S # 4
initialize parameters

unset noclobber

set prototypeName = $2
set prototypeDir = $1/.caps/$2/§63

set tmpDir = "$prototypeDir/temp"

make sure the temporary directory exists

70

if (! -4 $tmpDir) then
echo "creating temporary directory"
mkdir S$tmpDir
chmod 755 $tmpDir

endif

cd SprototypeDir

if ($?CAPS_COMPILE_FLAGS) then

set compileFlags = SCAPS_COMPILE_FLAGS
else

set compileFlags = ""
endif

sdd it s ISR EET AT EEEE YT
Check to see if an ada subdirectory exists in the current prototype
directory. If not, make one.

if (! -d $prototypeDir/ada) then
echo "Making Ada library in "$prototypeDir
mkdir S$prototypeDir/ada
chmod 755 $prototypeDir/ada

echo "g" | $ADA_HOME/bin/a.mklib -i $prototypeDir/ada >
$tmpDir/compile.script.temp

#Look for correct compiler version
set line = “grep $ADA_HOME $tmpDir/compile.script.temp’

rm $tmpDir/compile.script.temp

if ("$line" 1= "") then
Strip off ending period if necessary
set choice = “expr $line[1l] : °*\([0-9]1*\)"

echo $choice | $ADA_HOME/bin/a.mklib -i $prototypeDir/ada >& /dev/null
else

echo "Ada compiler not installed*
endif

$ADA_HOME/bin/a.path -a $CAPSHOME/lib -L $prototypeDir/ada

if ($?TAE) then
$ADA_HOME/bin/a.path -a $TAEADALIB -L $prototypeDir/ada
endif
endif

FHEEH A RS H S FHEH S HSH AR F S H S S B HEH S SHE S S H S B RS HEHH S RSB S S H S H RS S S 4 ¥
Check for a bin directory in which to put the executable

if (! -d $prototypeDir/bin) then
echo *Making bin directory "$prototypeDir/bin
mkdir $prototypeDir/bin
chmod 755 $prototypeDir/bin

endif

71

FHEFSFHHEFHFEFFFSHFFFFSFHHHFFFF S S G S F S S S H S FH S S S F S SRR RS
Compile
echo "Compiling prototype "S$prototypeName
cd ada
SADA_HOME/bin/a.make -v -w $prototypeName S$compileFlags \
-0 ../bin/$prototypeName.exe -f ../$prototypeName.*a

33T LS ES LS LSS LS LS LIS ST EL LTSS LS ES LS EL L E LS T
alert compilation complete

echo "Compilation complete" | alert

72

edit_ada.script
#!/bin/csh -£

FHHHHHFFHH AR H SRS FH AR S H S H B H SRS HRFHH B SR FHHH S FH S S H S H S F S S S H S S F S H 4
module: edit_ada.script

Description:

This script is used by CAPS to invoke the Verdix Syntax Directed
Ada Editor.

Usage:

edit_ada.script $HOME prototype_name v.v

Inputs:

Files:

prototypeDir/prototypeName. *a

Outputs:

Files:

Any modified file in prototypeDir

¥
#

LRSI RS ST RS RS S TSI ST LEL LTI YT
cd $1/.caps/$2/83

if (${?AEDIT_BASE}) then

setenv AEDIT_PATH SAEDIT_BASE/configuration

setenv AEDIT_BIN SAEDIT_BASE/bin

setenv AEDIT_XCHARS $AEDIT_PATH/kyn_xchars

setenv AEDIT_XKEYS SAEDIT_PATH/kyn_xkeys.s

setenv AEDIT_XMENU S$AEDIT_PATH/kyn_xmenu.vdx.s
#

SAEDIT_BIN/vads_edit $AEDIT BIN/keyflex -showButtons $*
else

echo "No Ada syntax directed editor installed"

echo "Edit caps defaults and choose a text editor instead."
endif

73

edit_interface.script

#!/bin/csh -£

itz EL SRS SIS EL S LSS SIS SIS LTSS LTSS ELLELES LTS EEL LS LS L
module: edit_interface.script

Description:
This script is used by CAPS to invoke TAE+ to build a prototype

user interface.

Usage:

¥ edit_interface.script SHOME prototype_name v.v

Inputs:

Files:

prototypeDir/bin/prototypeName.res (TAE+ resource file)
prototypeDir/bin/<TAE+ picture files>

#

Outputs:
Files:
prototypeDir/bin/prototypeName.res (TAE+ resource file)
prototypeDixr/bin/<TAE+ picture files>
#
Changes:
8/11/96 VB
change the third parameter fron v.v/bin to just v.v
for uniformity and because the bin is easy to put on and
hard to take off.
7/30/96 VB
add calls to automatic tae code transformation/genertion routines.
5/22/96 VB
Set tmpDir to "$prototypeDir/temp" instead of "$1/.caps/temp" to avoid
multiple users writing to the same file.
5/22/95 MTS
Set tmpDir to "$1/.caps/temp" instead of "/tmp" to avoid
multiple users writing to the same file.
HERSHHHHFHFHHF S HHGHFFFH A HHFHFSF IS S H RIS FHF RS F S I F IS S G H S FF S S S S S H 544

FHEHHHEH SRR RS HH SRR S R S S R S SR R R R R R R S R R

initialize parameters
EEE eSS S ES S E SIS ESET LS LS LI LIS SIS SIS SIS LSS LT

unset noclobber

set directory = $1
set prototypeName = $2
set version = $3

set prototypeDir = $directory/.caps/$prototypeName/$version
set tmpDir = *"$prototypeDir/temp"

make sure the temporary directory exists
if (! -4 $tmpDir) then
echo *“creating temporary directory"
mkdir $tmpDir
chmod 755 $tmpDir
endif

74

FHSHHFHFH R B F RS H S FH S HHHHH NS H S S S F S H S H RS H S H SIS HF S S S F S SRS H S S H#
Check for a bin directory in which to put the executable
iRt s I LSS LSS LSS L LTSS LTI LI LIS SIS LEILTILTLIL LT

if (! -d $prototypeDir/bin) then
echo "Making bin directory "S$prototypeDir/bin
mkdir $prototypeDir/bin
chmod 755 $prototypeDir/bin

endif

FHEEGHHHHHHFFAHHFF SRS F S H S FEHF SIS F S F S S H S S S F S F S E S S S S #4
Change to the prototypeDir/bin directory and invoke TAE+
FHEHF SR SRS H S S RE S S SRS S H S S HSH S HFF S S F SR HHEFFFFFFHFH S HHFF S F S H S H S5

cd SprototypeDir/bin
taewb $prototypeName

HEHHHSERFHHFHE SRS A SRS H A SR H IR S HH R F S F S S FHFSFSFSFSH SRS S S H 44
If a prototypeName.a file has been created using TAE+,

convert it to CAPS interface conventions,

generate interface files, and copy them up to the prototype directory,
leaving the TAE+ resource file

and any picture files in the prototypeDir/bin directory.

HEEREREEE AR R RS RS S SRR S S S R S S R R R H R A S R S S S 4

if (-f ${prototypeName}.a) then
echo "*
echo "Converting TAE+ generated file to CAPS format*
tae_to_caps $prototypeName $version
echo "TAE+ conversion complete."
mv ${prototypeName}.a ${prototypeName}.a.generated
endif

edit_psdl.script

#!/bin/csh -£
FHEFSE S A S EHF S A SR HH S H IR RS S S S H S HHF RS HF S A FFHFSH S S H SRS SRS R LS FEF S S H 44

module: edit_psdl.script

Description:

This script is used by CAPS to invoke the PSDL Editor

Usage:

edit_psdl.script SHOME prototype_name v.v

Inputs:

Files:

prototypeDir/prototypeName.psdl

Outputs:

Files:

prototypeDir/prototypeName.psdl

#

Changes:

5/22/96 VB

Set tmpDir to "$prototypeDir/temp" instead of "$1/.caps/temp" to avoid
multiple users writing to the same file.

5/22/95 MTS

Set tmpDir to *$1/.caps/temp® instead of "/tmp® to avoid
multiple users writing to the same file.

#

HEFFH AR HHEHHEFHH A H S H RS SRS RS RS R R R R RS RS S SRR S A SR A 4

FHEGH SR E S S H S S S S H B A HH R R H S F S S FSF S H S H AR HFHSF S HSH S FSF TSRS F S FEF S 444
initialize parameters

unset noclobber

set prototypeName = $2
set prototypeDir = $1/.caps/$2/$3

set tmpDir = “$prototypeDir/temp"

make sure the temporary directory exists
if (! -d $tmpDir) then
echo "creating temporary directory"
mkdir $StmpDir
chmod 755 $tmpDir
endif

FHEHH S S E S E R H SR H A S H S SRS H S F S A S HHH S S F S HFHHF I H S S HSH SRS
Change to the prototypeDir directory, prepare the attribute file name
file and invoke the Editor

cd $prototypeDir

rm -f attr_file_name.grf

rm -f gedatatransfile.txt

rm -f gedatatransfile2.txt

echo > gedatatransfile.txt

echo > gedatatransfile2.txt

echo $prototypeName.grf > attr_file_name.grf

76

echo $prototypeName.grf >> attr_file_name.grf
if (! -f $prototypeName.grf) then
echo > $prototypeName.grf
endif
psdl_editor -geom 600x750+0-0 $2.psdl

e E s E LTI LTI LI B ET ST LS T
Clean up.

rm attr_file_name.grf
rm gedatatransfile.txt
rm gedatatransfile2.txt
rm free_list.stats

77

execute.script

#!/bin/csh -f

HHEFHFHFHSHHHHSHH A B HHHHF SR H R F RS HSFSHHHHFSH A S SRS H S H RS
Module: execute.script
Description:
This script is used by CAPS to execute the prototype in a separate
terminal window.
Inputs:
Files:
prototypeDir/prototypeName.exe is the executable file
There may be other inputs in this directory: application dependent
Outputs:
Files:
application dependent

#
#
#
#

5/22/96 VB
Set tmpDir to "S$prototypeDir/temp® instead of "$1/.caps/temp* to avoid

nmultiple users writing to the same file.

5/22/95 MTS
Set tmpDir to "$1/.caps/temp" instead of "/tmp" to avoid

#

#

#

#

#

#

#

Changes:
#

#

#

#

#

multiple users writing to the same file.
#

#

FHEHHHSH RS R H SR RS SR SRS H R R SRS H R H S SR SR

RSB RS ELEELIS LT SELELSESEE LSS SIS IS LS ELEL SIS LTS LE
initialize parameters

unset noclobber
set prototypeDir = $1/.caps/$2/3%3

set tmpDir = "$prototypeDir/temp"

make sure the temporary directory exists
if (! -4 $tmpbhir) then
echo '"creating temporary directory"
mkdir S$tmpDir
chmod 755 $tmpDir
endif

set prototypeName = §2

RIS LIS L LSS IS LSS SEEESS LSS S LTSS EL ST LS E
execute the prototype in a separate xXterm

echo "CPU speed ratio = " $CAPS_CPU_RATIO

cd S$prototypeDir/bin
Xterm -n S$prototypeName -g 80x25+10+300 -sb -e ./$prototypeName.exe

78

make.script
#!/bin/csh -£

FHESFHHHHEE SRS HHHHHE I A S HSEHH RIS S R A HF S I H S S FHFHH RS FHFSF S F S F S F S 54
Module name: make.script
Description:
This script is used by CAPS to execute the scheduler and
create the prototype.a file.
Usage: make.script <home_directory> <prototype_name> <variation.version>
Inputs:
Files:
$1/.caps/temp/<prototype_name>.psdl (The complete PSDL program)
From the translator: prototypeDir/exceptions.a
prototypeDir/timers.a
prototypeDir/streams.a
prototypeDir/main.a
prototypeDir/drivers.a
scheduler uses stdin to select scheduling algorithm. This
could come from the user, but in this implementation, the
scheduling algorithms are automatically tried one at a time.
From scheduler: prototypeDir/ss.a
prototypeDir/ds.a
Ooutputs:
Files:
prototypeDir/<prototype_name>.a

Changes:
5/22/96 VB
Set tmpDir to "$prototypeDir/temp" instead of "$1/.caps/temp® to avoid
multiple users writing to the same file.
5/22/95 MTS
replace all reference to "/tmp" by "$1/.caps/temp"
8/21/95 MTS
change the condition "$next <= 4" to "$next <= 2"
and the condition "$next > 4" to "$next > 2"
to skip the simulated annealing algorithm
id e Es L ES SRS B LSS E TSI LIS ET I EY LY
| # initialize parameters

B S R G IR I R S I I T S R N T SR S SR T e T

unset noclobber
set schedAlgorithm = 1
set prototypeDir = $1/.caps/$2/$3

set tmpDir = "S$prototypeDir/temp"

make sure the temporary directory exists
if (! -4 $tmpDir) then
echo ‘creating temporary directory"
mkdir $tmpDir
chmod 755 $tmpDir
endif

set prototypeName = $2

79

cd S$prototypeDir

isdd st s bR SES RIS TS LT
check for psdl file and output from the translator

if (! -f $tmpDir/$prototypeName.psdl) then
echo * - PSDL source file" $tmpDir/$prototypeName.psdl "not found.
Aborting."
exit(-1)
endif
if (! -f main.a) then
echo "Prototype Translation Required" | alert
exit(~-1)
endif

FHEHHHHHSHF B S HH B A S S H S H S FHH RS H S H A S EF B HFHEH S S S S S S E S S HHHHSF S FH##
Execute the scheduler

echo " - Starting CAPS Scheduler ..."
pre_ss $tmpDir/${prototypeName}.psdl | decomposer > atomic.info

set next = 1

set ssOut = ‘echo $next *“\ng\n" | scheduler $tmpDir/$prototypeName.psdl
$prototypeName.diag | grep "schedule found"®

replace old code
while ($next <= 3 && $#ssOut == 0)
by the following line to skip the simulated annealing algorithm

while ($next <= 2 && $#ssOut == 0)
if ($next != $schedAlgorithm) then
echo * - Feasible schedule not found. Trying algorithm® S$next

set ssOut = ‘echo $next "\ng\n" | scheduler $tmpDir/$prototypeName.psdl
$prototypeName.diag | grep “"schedule found"®
endif
@ next ++
end

replace old code
if ($next > 3) then
by the following line to match the above correction

if ($next > 2) then

echo * - Feasible schedule not found. Aborting.*
exit (-1)
echo * - Deleting Temporary Files"

rm -f atomic.info

rm -f non_crits
rm -f tl.a

rm -f ds.a

rm -f ss.a

rm

-f stdin.psdl.lst

80

rm -f free_list.stats
rm -f exceptions.a
rm -f instantiations.a
rm -f timers.a
rm -f streams.a
rm -f drivers.a
rm ~f main.a
endif
echo " -" $ssOut

i s LTSRS L SIS LTI AT ISR EY
create prototypename.a file

echo " - Generating "S$prototypeName.a
if (-f SprototypeName.a) then

cp $prototypeName.a $tmpDir
endif

i L EE L EEEEEL LSS AL IISSISTLIILT TSI E
Put the exceptions, timers and streams packages in

echo * - Installing Exceptions Package"
cat exceptions.a > S$prototypeDir/S$prototypeName.a

echo " - Installing Instantiations Package"
cat instantiations.a >> S$SprototypeDir/$prototypeName.a

echo " ~ Installing Timers Package"
cat timers.a >> S$prototypeDir/S$prototypeName.a

echo * - Installing Streams Package"

cat streams.a >> $prototypeDir/$prototypeName.a

iid 2SS LRSS BRI RS S IS EEE RN EEEI TS LY
Add the drivers package to <prototype_name>.a

echo * - Installing Drivers Package"

cat drivers.a >> SprototypeDir/$prototypeName.a

eE LR SRS BT T IR TSI ES T EEE ST ST
cat the dynamic shedule to <prototype_ name>.a

echo " - Installing Dynamic Schedule Package"
cat ds.a >> S$prototypeDir/$prototypeName.a

FHEFHHHH S AR HH AR E RS H S AR SRS S SRS H S R H S H S RS S S H S S 44
cat the static shedule to <prototype name>.a

echo * - Installing Static Schedule Package"
cat ss.a >> $prototypeDir/S$prototypeName.a

FHEFERHEE SR E R AR RS B S H R S A S S H R R R R R R S R R R 4

81

Add the final with/use lines and begin null; end; to <prototype_name>.a

echo " - Installing main procedure"
cat main.a >> $prototypeDir/S$prototypeName.a

it s s s IEELTISSEEESSEEELSEESESIEEEELEEIIIETLTEEEEEEEEBEL 2N
remove temp files

echo " - Deleting Temporary Files"
rm -f atomic.info
rm ~f non_crits
rm -f tl.a
rm -f ds.a
rm -f ss.a
rm -f stdin.psdl.lst
rm ~-f free_list.stats
rm ~-f exceptions.a
rm -f instantiations.a
rm -f timers.a
rm -f streams.a
rm -f drivers.a
rm ~f main.a

SRR E LS E B SIS SIS EIET TSI EE
alert build complete

echo "Scheduling complete” | alert

82

save_ada_files

#!/bin/csh

FHHEHHFHH RS S S H S S HHHSH S S FHH S H S HHF RS H RS S HHHHF SIS H SR HH S HF S H S H S S 44
#
This script saves copies of the old versions of all ada files
#

2B EII LS LE SIS LIS TSI LSS LSS SIS IS SIS LT LS LT
set dir = $1 v
cd $dir

set nonomatch

set pattern = "*.a"
set files = $pattern
if ("$files" != "S$pattern") then

avoid a failure if the pattern driving the loop does not match anything.
foreach file ($files)
cp -p $file $file.bak
end
endif

unset nonomatch

&3

show_ops.exe

#!/bin/csh

FEEHESFHHESEHF SR AR H SRS RS H SR S R S R R S S R S S R RS S R R H H H H
z Placeholder for the Design Database Module which is not implemented in ﬁ
this CAPS Release.
ﬁ###z

echo "The Design Database is not implemented in CAPS Release 2"

84

tae_to_caps
#!/bin/csh
#HEHFEHFFHEH S S A F SR AR E SRS RS S S SRS RS SR R R R

This script converts TAE generated Ada code to run in

the CAPS environment. It assumes the Ada code was generated
using the multi-file style, with the option

"Generate default print statements in Event Handlers" DISABLED.

#
#
#
#
#
#
This program reads the "<prototype>.a" file generated by TAE and
generates the files needed to interface to CAPS. The main file
‘"<prototype>.generated_tae_event_monitor.a" contains an Ada package
with a procedure that performs one cycle of the TAE event loop with
has bounded execution time. The command line to invoke the script is:
#
#
#
#
#
#

tae_to_caps <prototype> <version>
This script should be called only if the file <prototype>.a exists
I L s LS EL LTS ELELE LIS TE ST SILSILILIELEL SIS LS L

check that the shell script has the right number of parameters
if (S#argv != 2) then

echo "Usage: tae_to_caps <prototype> <version>

exit
endif

unpack the parameters
set prototype=$1 # the name of the prototype
set version=$2 # variation.version

define local variables
set capsPath=$HOME/.caps/$prototype/$version
the path for the prototype directory
set caps_lib_path=$CAPSHOME/bin
the path for finding the awk scripts
set caps_temp_path=$capsPath/temp
the path for the temporary files
set inDeclFile=S$caps_temp_path/input_items
the description file for tae input items
set outDeclFile=$caps_temp_path/output_items
the description file for tae output items

set adaFile=$capsPath/bin/$prototype.a
the ada code file generated by TAE+

set monitor_file=$capsPath/$prototype.generated_tae_event_monitor.a
the output file for the generated event monitor procedure

set task_file=S$capsPath/$prototype.event_task.a
the output file for the generated task

make sure the temporary file directory exists
if (¢ -d $caps_temp_path) then

85

echo making temp directory
mkdir S$Scaps_temp_path
endif

save backup copies of all previously existing ada files
echo "Making backup copies of existing ada files"
save_ada_files S$ScapsPath

Generate the description files for tae input items and tae output items

set specs = ($capsPath/*.*.spec.psdl)
set imps = (ScapsPath/*.*.imp.psdl)
echo "dummy input" | nawk -f S$Scaps_lib_path/find_items.awk \

specs="$specs” imps="$imps" inDeclFile=$inDeclFile outDeclFile=$outDeclFile

generate the input bubbles
if (-f $inDeclFile) then
nawk -f Scaps_lib_path/input_bubbles.awk \
prototype=Sprototype path=$capsPath \
$inDeclFile
else
echo "The description file for tae input items does not exist*

endif

generate the input monitor procedure

echo generating $monitor_file

nawk -f Scaps_lib_path/event.awk \
$adaFile > Smonitor_file

if (-f SoutDeclFile) then
generate the output bubbles
nawk -f $Scaps_lib_path/ocutput_bubbles.awk \
prototype=$prototype path=S$capsPath $outDeclFile

generate the task that provides mutual exclusion for calls to TAE
echo generating $task_file
nawk -f Scaps_lib_path/task.awk \

prototype=$prototype SoutDeclFile > S$task_file

generate the output procedure specs in the panel package spec
nawk -f Scaps_lib_path/panel_specs.awk \
prototype=$prototype capsPath=$capsPath inDeclFile=$inDeclFile \
SoutDeclFile

else
echo "The description file for tae input items does not exist"

endif

generate the augmented panel bodies
if (-f $inDeclFile && -f SoutDeclFile) then
nawk -f $caps_lib_path/panel_bodies.awk \
prototype=Sprototype capsPath=$capsPath outDeclFile=$outDeclFile
$inDeclFile
endif

copy up all generated and unmodified ada files
cd $ScapsPath/bin

86

echo generating S$capsPath/${prototype}.global_b.a
cp global_b.a ../${prototype}.global_b.a

echo generating $capsPath/${prototype}.global_s.a
cp global_s.a ../${prototype}.global_s.a

echo generating $capsPath/${prototype}.${prototype}_ creat_init.a
cp S${prototype}__creat_init.a ../${prototype}.${prototype}__creat_init.a

echo generating $capsPath/${prototype}.${prototype}_support_b.a
cp ${prototype}_ support_b.a ../${prototype}.${prototype}_support_b.a

echo generating $capsPath/${prototype}.${prototype)}_support_s.a
cp ${prototype)_support_s.a ../${prototype}.${prototype}_support_s.a

87

temp_dir.script

#!/bin/csh -£f

FHEFSHHHFFH S A S FH S S HH SRR B H SRS HFFFRE RS S HHRFFH S H SIS S FHF SRS HFHHH
module: temp_dir.script

Description:

This script is used by CAPS to check if the prototype's

temporary directory exists, and if not, creates it.
Usage:

temp_dir.script SprototypeDir/temp

Inputs:

Files:

none

Outputs:

Files:

Creates prototypeDir/temp if needed

#
#

FHESHFH RS S H RS S S HEHHE RS S S H H S S R R R R R R S

set tmpDir = $1

make sure the temporary directory exists
if (! -4 StmpDir) then
echo “creating temporary directory"
mkdir S$tmpDir
chmod 755 $tmpDir
endif

88

translate.script
#!/bin/csh -f

RIS s RIS ST EL SIS LSS IS LSS LIS E L
module: translate.script
Description:
This script is used by CAPS to run the translator.
Usage: translate.script S$HOME <prototype_name> V.V
Inputs:
Files:
expander uses prototypeDir/<prototype_name>.psdl
translator uses tmpDir/<prototype_name>.psdl
Outputs:
Files:
expander writes to tmpDir/prototype.psdl
translator writes to:
prototypeDir/streams.a
prototypeDir/timers.a
prototypeDir/exceptions.a
prototypeDir/main.a
prototypeDir/drivers.a
Changes:
5/22/96 VB
Set tmpDir to "SprototypeDir/temp" instead of "$1/.caps/temp" to avoid
multiple users writing to the same file.
5/22/95 MTS
Set tmpDir to "$1/.caps/temp" instead of "/tmp" to avoid
multiple users writing to the same file.

ok Sk Sk Sk 3k Sk S ok ik Sk Sk ok ok e e ok stk S ok i o ok oF ok

(2223 E LSS LSS SIS SIS LTI SIS T"
initialize parameters

unset noclobber

set debug = **"

set prototypeName = $2

set prototypeDir = $1/.caps/$2/$3

set tmpDir = *$prototypeDir/temp"
make sure the temporary directory exists
if (! ~d $tmpDir) then
echo "creating temporary directory"
nmkdir StmpDir
chmod 755 $tmpDir
endif

cd $prototypeDir

B E RS SRR LS E I I AT IS TR EE ST
remove temporary files

rm -f StmpDir/$prototypeName.err

FERHHEFH AR E AR EH SRS E RSB R R R H S S SRS S S SRR E A S S S SRR

89

echo " - Expanding PSDL source ...
echo " - Expanding* $prototypeName.psdl

(cat SprototypeName.psdl | expander >! StmpDir/S$prototypeName.psdl) >&!
StmpDir/S$prototypeName.err

S EE LSS SIS LSS SRS SIS ELELISLSL IS ST LSS
if expander got errors, alert the user

set err = “cat $tmpDir/$prototypeName.err’
if ($#err > 1) then
cat $tmpDir/$prototypeName.err
echo Syntax errors found during expansion. See $prototypeName.psdl | alert

exit(-1)
endif

i3s3 EE ISR EE LSS LTSS ILILTLL LSS ELSLILESELIL LI L LTS TS
if there were no expander errors, execute translator

echo " - Translating PSDL source ...
echo " - Generating CAPS prototype packages"

SCAPSHOME/bin/translator.exe $tmpDir/${prototypeName}.psdl

t B S E SRR EE L LSS S LS LS LSS ESEELL LTSS LIS L LT LSS
remove temporary files

rm -f free_list.stats

LEEs eSS S A ESSELLIEESLSEESEESELSEELEEELSELLEEL L LT LS S
alert translation complete

echo "Translation complete" | alert

90

APPENDIX C. WORLD WIDE WEB SITES

The following is a list of World Wide Web Uniform Resource Locators (URLs)
frequently visited during this thesis research. They provide the latest information on the
software components used in the CAPS operating environment. They are an ideal
starting point for product information, questions, troubleshooting, and future research.
These web locations were valid at the time of this writing; however, due to the ever
changing nature of the web, some may no longer be valid.

CAPS Research Project
http://wwwcaps.cs.nps.navy.mil/

Solaris

Sun Microsystems
http://www.Sun.COM:80/index.html

Sun Microsystems Computer Company
http://www.sun.com/corporateoverview/smcc/index.html

Sun Products and Solutions
http://www.sun.com/products-n-solutions/index.html

Solaris Products
http://www.sun.com/solaris/index.html

Solaris Products Site Map - Good starting point for Solaris information
http://www.sun.com/solaris/sitemap.html

Solaris 2.5 Overview
http://www.sun.com/solaris/2.5/index.html

Solaris 2.5.1 Overview
http://www.sun.comysolaris/2.5/2.5.1/index.html

Solaris Migration Initiative Home Page
http://www.sun.com/smcc/solaris-migration/

91

Solaris Migration Initiative Home Page
http://www.sun.com:80/smcc/solaris-migration/docs/migration-initiative.html

Help Migrating from SunOS to Solaris 2.X
http://www.swcp.com/~pcaskey/sunos-migrate.html

Solaris 1.x to Solaris 2.x Transition Guide
http://www.sun.com/smcc/solaris-migration/docs/guide-files/transition-guide.html

Solaris 2 Frequently Asked Questions
http://gonzo.tamu.edu/solaris2.html

Solaris 2 Porting FAQ
http://www.cis.ohio-state.edu/hypertext/fag/usenet/Solaris2/porting-FAQ/faq.html

SunSoft Support Resolutions
http://access1.sun.com/

SunSoft Solaris Support
http://access1.sun.com/TechRoomy/solaris.html#sparc

SunSolve ONLINE
http://192.9.9.24/

FAQ for the OPEN LOOK User Interface
http://www.cs.indiana.edu/fag/OpenLook/front_page.html

Sun Books
http://www.sun.com/cgi-bin/show?smcc/solaris-migration/docs/books.html
TAE Plus

TAE Plus
http://groucho.gsfc.nasa.gov/Code_520/Code_522/Projects/TAE/

TAE Plus Home Page
http://www.cen.com/tae/tachome.html

Century Computing, Inc. Home Page
http://www.cen.com/

92

OSF / Motif

OSF Home Page
http://www.osf.org/

User Environment Information
http://www.osf.org/motif/index.html

OSF/Motif® 2.0 Information
http://www.osf.org/motif/Motif20/index.html

Motif FAQ
http://www.cis.ohio-state.edu/hypertext/fag/usenet/motif-fag/top.html

Motif on the World Wide Web
http://www.cen.com/mw3/

Kenton Lee: Technical X Window System and OSF/Motif WWW sites
http://www.rahul.net/kenton/xsites.html

Integrated Computer Solutions (third-party provider of Motif binaries)
http://www.ics.com/
X Windows

X Consortium Home Page
http://www.x.org/

X Window System, Release 6
http://www.x.org/consortium/R6index.html

X11 Release 6, Release Notes
http://www.x.org/consortium/R6doc/relnotes/

X11 FAQ
http://www.cis.ohio-state.edu/hypertext/fag/usenet/x-fag/top.html

Kenton Lee: Technical X Window System and OSF/Motif WWW sites
http://www.rahul.net/kenton/xsites.html

93

Getting X11R6
http://www.x.org/consortium/GettingX 1 1R6:html

Walnut Creek CDROM (more than just X11)
http://www.cdrom.com

X11R6 Source Code From Walnut Creek CDROM
http://www.cdrom.com/pub/X11R6/

X11 Contrib FAQ
ftp://ftp.x.org/contrib/faqs/FAQ
Synthesizer Generator
GrammaTech, Inc.
http://www.grammatech.com/

Eli

University of Colorado at Boulder
http://www.cs.colorado.edu/~eliuser/
Alternate User Interface Tools

User Interface Software Tools
http://www.cs.cmu.edu/afs/cs/user/bam/www/toolnames.html

Fresco
http://www.faslab.com/fresco/HomePage.html

TCL WWW Info
http://www.sco.com/Technology/tcl/TcLhtml

Togl
http://www.ssec.wisc.edu/~brianp/TogLhtml

94

Ada Programming Language and Compilers

Ada Information Clearinghouse Home Page
http://sw-eng.falls-church.va.us/AdalC/Welcome.html

Ada 95 Information
http://www.acm.org/sigada/ada_95/ada_95.html

Home of the Brave Ada Programmers
http://1glwww.epfl.ch/Ada/

Public Ada Library (PAL)
http://www.cdrom.com/pub/ada/

Lovelace Ada Tutor Home Page
http://iglwww.epfl.ch/Ada/Tutorials/Lovelace/lovelace.html

Ada 95 Reference Manual
http://Iglwww.epfl.ch/Ada/LRM/9X/rm9x/rm9x-toc.html

The Free X11/Ada95 Programmer’s home Page
http://ocsystems.com/xada/

AdaCore Home Page (Gnat Ada Compiler)
http://www.gnat.com/

Download Gnat Ada Compiler
ftp://cs.nyu.edu/pub/gnat/

Rational Software Corporation (VADS, Apex, Spire Compilers)

http://www.rational.com/

Intermetrics (AdaMagic and AppletMagic)
http://www.inmet.comyMID/index.html

AdaMagic (Ada95 Compiler)
http://www.inmet.com/MID/WHAT/adamagic.html

AppletMagic® (Ada95 to Java Compiler)
http://www.inmet.com/MID/WHAT/java.html

95

Download AppletMagic®
http://www.inmet.comyjavadir/download/

Thomson Software - Object Ada
http://www.thomsoft.com/products/ada/Ada.html

GRASP Home Page (Gnat Compiler front end and more)
http://www.eng.auburn.edu/department/cse/research/grasp/grasp.html
Perl

The Perl Language Home Page
http://www.perl.com/perl/index.htm!

Per]l Manual
http://perl.com/perl/manual/

Index of Perl/HTML archives
http://www.seas.upenn.edu/~mengwong/perlhtml. html
Miscellaneous Unix Information

The Unix Reference Desk
http;//www.eecs.nwu.edu/unix.htmi#x 11

Unix Guru Universe
http://www.ugu.com/sui/ugu/show?ugu

Solaris 2.5 Freeware
http://smc.vnet.net/solaris_2.5.html

The Internet goodies
http://www.ensta.fr/internet/

96

Reference Books

Computer Literacy Bookshops
http://www.clbooks.com/

OReilly Home Page
http://www.ora.com/

97

98

APPENDIX D. POINTS OF CONTACT

The following is a list of persons that were contacted during the conduct of this
thesis for product information, ordering, and support:

Solaris:

Betty Bennett

Sales Representative

Sun Microsystems Computer Company
1842 N. Shoreline Blvd., MS UMTV80-01
Mountain View, CA 94043-1100

Phone: (415) 960-4404

Fax: (415) 961-4872

email: betty.bennett@west.sun.com

Gregory Hansen

Systems Engineer

Sun Microsystems Computer Company
1842 N. Shoreline Blvd., MS MTV80-01
Mountain View, CA 94043-1100
Phone: (415) 960-4213

Fax: (415) 961-4872

email: greg.hansen@west.sun.com

TAE Plus:

Lisa C. Koons

Century Computing
8101 Sandy Spring Road
Laurel, MD 20707
Phone: (301) 953-3330
Fax: (301) 953-2368
email: lkoons@cen.com

99

Motif:

Kathie Dawe

Supervisor, Direct Channels
Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
Phone: (617) 621-8866
Fax: (617) 621-0306

email: kdawe@osf.org

VADSself / Rational Apex / Spire:

Ted Driscoll

Rational Software Corporation
2800 San Tomas Expressway
Santa Clara, CA 95051-0951
Phone: (415) 824-1430

Fax: (415) 824-1435

Object Ada:

Alfred E. Miller

Account Manager

Thomson Software Products
10251 Vista Sorrento Parkway
San Diego, CA 92121

Phone: (619) 457-2700

Fax: (619) 452-1334

email: amiller@thomsoft.com

100

Synthesizer Generator:

Susan Matteson

Manager of Business Services
GrammaTech, Inc.

One Hopkins Place

Ithaca, NY 14850

Phone: (607) 273-7340

Fax: (607) 273-8752

101

102

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.

Monterey, CA 93943-5101

. Dr. Ted Lewis, Chairman, Code CS/Lt

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. Prof. Luqi, Code CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. Prof. Berzins, Code CS/Be

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. Lt Dennis M. Irwin

2134 Hoyt DR
Baton Rouge, LA 70816

103

No. Copies

20

